
©2016-2017	Texas	Christian	University,	Computer	Science	Department	

	
	

	
	
	
	
	

Developer	Guide	
	
	
	

Version	1.0	
	

May	05,	2017	
	
	

Design	Document	 	 2016-2017	

	

i	Scheduling	Your	Horizons	
	

Revision	Signatures	
	

By	signing	the	following,	the	team	member	asserts	that	he/she	has	read	the	entire	document	and	
has,	to	the	best	of	his	knowledge,	found	the	information	contained	herein	to	be	accurate,	relevant,	and	
free	of	typographical	error.	
	
	

Name	 Signature	 Date	

Cameron	Diou	 	 	

Harrison	Engel	 	 	

Steven	Garcia-Renteria	 	 	

Rebecca	Ruch	 	 	

Will	Taylor	 	 	
	
	

Design	Document	 	 2016-2017	

	

ii	Scheduling	Your	Horizons	
	

Revision	History	
	

The	following	is	a	history	of	document	revisions.	
	

Version	 Changes	 Date	

1.0	 Initial	Guide	 05/05/17	

	 	 	

	 	 	

	 	 	

	 	 	
	
	
	 	

Design	Document	 	 2016-2017	

	

iii	Scheduling	Your	Horizons	
	

Table	of	Contents	
1	 Introduction	..	1	

1.1	 Purpose	...	1	
1.2	 Project	Overview	...	1	
1.3	 Section	Overviews	...	1	
1.4	 References	..	2	

2	 System	Overview	...	2	

3	 System	Requirements	...	4	
3.1	 Hardware	Requirements	..	4	
3.2	 OS	Requirements	..	4	

4	 The	Development	Environment	...	5	
4.1	 Environment	Overview	...	5	

4.1.1	 Application	Image	...	5	
4.1.2	 Host	Environment	..	6	

4.2	 Development	Environment	Setup	..	7	
4.3	 Development	Workflow	...	9	

5	 Production	Deployment	..	10	

6	 Application	Guide	..	11	
6.1	 Overview	...	11	
6.2	 System	Architecture	...	12	
6.3	 Settings	and	Configuration	...	13	

6.3.1	 Environment	Variable	Configuration	...	13	
6.3.2	 File	Configuration	...	14	

6.4	 Registration	...	15	
6.4.1	 URL	Mapping	..	15	
6.4.2	 View	Classes	...	16	
6.4.3	 Database	Schema	...	18	

6.5	 Schedule	and	Report	Generation	...	19	
6.5.1	 URL	Mapping	..	19	
6.5.2	 View	Classes	...	19	

6.6	 reCAPTCHA	Implementation	..	20	
6.6.1	 Client-Side	Implementation	...	20	
6.6.2	 Server-Side	Implementation	..	20	

7	 Glossary	of	Terms	..	21	

Design	Document	 	 2016-2017	

	

1	Scheduling	Your	Horizons	
	

1 Introduction	

1.1 Purpose	
	
	 This	document	provides	the	information	and	processes	required	for	a	developer	to	work	on	the	
Scheduling	Your	Horizons	(SYH)	system	and	for	a	System	Administrator	to	deploy	and	maintain	the	system.		

1.2 Project	Overview		

Expanding	Your	Horizons	Network	(EYHN)	is	an	organization	that	was	founded	to	pique	girls’	interest	in	
STEM	fields.	Every	year,	chapters	of	the	organization	host	conferences	around	the	globe	where	young	girls	
watch	presentations	and	participate	in	workshops	led	by	women	adult	role	models	who	are	working	in	a	STEM	
field.	There	are	currently	more	than	80	conferences	in	32	U.S.	states,	Europe,	and	Asia	with	up	to	25,000	girls	
attending	each	year.		

The	Texas	Christian	University	(TCU)	Computer	Science	Department	was	originally	approached	in	2005	by	
the	EYHN,	Texas	Wesleyan	University	(TxWes)	branch	to	create	a	software	solution	for	its	scheduling	and	
registration	system.	The	system	was	well	received	and	has	been	operational	for	the	past	eleven	conferences.	It	
is	now	out	of	date	and	can	no	longer	be	used.	Scheduling	Your	Horizons	(SYH)	will	replace	this	system	while	
expanding	upon	the	original	functionality	to	allow	user	registration.	

1.3 Section	Overviews	
	
	 The	System	Overview	(Section	2)	gives	a	basic	overview	of	how	the	system	is	structured	and	some	of	the	
design	philosophies	of	the	system.		
	
	 The	System	Requirements	(Section	3)	describes	the	system	and	environment	requirements	for	
developing	the	system	and	for	deploying	the	system.	
	
	 The	Development	Workflow	(Section	4)	describes	the	development	workflow	for	making	changes	and	
adding	features	to	the	system.	
	
	 The	Production	Deployment	(Section	5)	provides	the	information	and	processes	necessary	to	deploy	the	
application	in	a	production	environment.	
	

The	Application	Guide	(Section	6)	gives	an	overview	of	the	code	structure	and	main	classes	of	the	
application.	
	
	 The	Glossary	of	Terms	(Section	7)	provides	a	glossary	of	terms	used.				
	
	
	 	

Design	Document	 	 2016-2017	

	

2	Scheduling	Your	Horizons	
	

1.4 References	
	
	 It	is	expected	that	developers	who	plan	to	make	modifications	understand	Python	3,	the	Django	
framework,	Nginx,	Passenger,	and	Docker.	Links	to	these	technologies	can	be	found	below.	
	
	 Python	3:	https://www.python.org/doc/	
	 Django:	https://www.djangoproject.com/	
	 Nginx:	https://www.nginx.com/	

Passenger:	https://www.phusionpassenger.com/library/	
Docker:	https://www.docker.com/	

	

2 System	Overview	
	
	 This	section	gives	a	high-level	overview	of	the	components	of	the	system	and	where	to	look	in	this	
document	to	find	out	more	information	about	each	component.		
	
Overview	of	System	Architecture:	The	architecture	of	the	system	consists	of	five	major	pieces:	the	Django	web	
application,	the	Scheduling	library,	a	Passenger	app	server,	an	Nginx	HTTP	server,	and	a	MariaDB	database	all	
residing	on	Docker	images.	
	

	
	
Django	Web	Application:	The	Django	Web	Application	contains	the	logic	of	the	application	and	is	the	core	piece	
of	the	system.	This	system	is	described	in	depth	in	Section	6.	
	

Design	Document	 	 2016-2017	

	

3	Scheduling	Your	Horizons	
	

Scheduling	Library:	A	Python	library	that	provides	the	scheduling	algorithms	used	by	the	web	application	for	
scheduling	the	event.	This	library	is	independent	because	it	does	not	necessarily	rely	on	the	Django	Web	
Application	to	function	and	could	be	used	in	other	similar	scheduling	applications.	
		
Passenger	App	Server:	Passenger	is	used	as	an	intermediary	between	the	Nginx	HTTP	server	and	the	Django	
Web	Application.		
	
Nginx	Http	Server:	Nginx	is	a	very	fast	HTTP	server	often	used	as	a	reverse	proxy	server.		
	
MariaDB	Database:	MariaDB	is	the	open	source	version	of	MySQL.	It’s	meant	to	be	a	stand	in	replacement	for	
MySQL,	meaning	that	the	application	doesn’t	need	to	distinguish	between	a	MySQL	database	and	a	MariaDB	
database.	The	drivers	used	by	the	Django	Web	Application	to	access	the	MariaDB	database	also	work	for	MySQL	
databases.	The	MariaDB	database	schema	is	described	using	Django’s	Models	framework.	For	the	database	
schema	see	Section	6.4.3.	
	
Docker:	Docker	is	used	to	containerize	the	application.	It	makes	managing	the	environment	easier	and	helps	
standardize	deployment.	
	
	 	

Design	Document	 	 2016-2017	

	

4	Scheduling	Your	Horizons	
	

3 System	Requirements	
	

This	section	details	the	system	requirements	for	installing	and	running	the	application.		

3.1 Hardware	Requirements	
	

There	are	no	specific	hardware	requirements,	although	it	is	recommended	to	have	at	least	156GB	of	disk	
space	and	4	GB	of	RAM.	

3.2 OS	Requirements	
	
	 As	a	Docker	container,	this	system	can	run	on	any	operating	system	that	supports	later	versions	of	
Docker	(17+).	At	the	time	of	this	writing	it	includes	most	Linux	servers	and	desktop	systems,	macOS,	and	
Windows	10.	The	instructions	in	this	developer	guide	are	written	from	the	perspective	of	developing	on	macOS	
and	deploying	to	a	Linux	server.		

	

	
(Source:	https://docs.docker.com/engine/installation/#supported-platforms)		

	
	
	

	 	

Design	Document	 	 2016-2017	

	

5	Scheduling	Your	Horizons	
	

	

4 The	Development	Environment	
	
	 This	section	details	how	to	set	up	the	environment	required	to	run	the	application.	Since	the	application	
is	containerized	using	Docker	it	can	be	installed	and	developed	on	any	operating	system	that	supports	Docker	
(see	Section	3).	
	
The	Environment	Overview	subsection	describes	the	system,	applications,	and	libraries	required	to	run	the	
application.	
	
The	Development	Environment	Setup	subsection	describes	how	to	set	up	the	development	environment	(with	
and	without	Docker)	on	macOS	systems.	This	setup	is	good	for	rapid	development	and	testing.		
	
The	Development	Workflow	section	describes	the	basic	development	workflow	used	to	make	changes	to	the	
application.	

4.1 Environment	Overview	
	

4.1.1 Application	Image	
	
The	Docker	Image	of	the	application	defines	the	environment,	operating	system,	and	files	available	to	

the	application.	It	is	constructed	using	the	following	layers.		
	

4.1.1.1 Base	Image:	Passenger-full	
• Source:		https://hub.docker.com/r/phusion/passenger-full/		
• Description:	The	base	image	of	the	main	application	image	is	passenger-full.	It	is	an	Ubuntu	16.04	image	

with	Passenger,	Nginx,	and	Python	already	pre-installed	along	with	some	other	useful	tools.	See	
https://hub.docker.com/r/phusion/passenger-full/	for	more	information.	

	
4.1.1.2 Configuration	Files	

• Source:	/nginx	folder	
• Description:	The	files	used	to	configure	the	Nginx	Server,	Passenger,	and	Django	Application.		

	

4.1.1.3 Application	Code	
• Source:	/web	folder	
• Description:	The	Python	code	for	the	main	application.	It	is	stored	under	the	/app/webapp	folder	of	the	

image.	
	

4.1.1.4 MySQL	Client	Libraries	
• Source:	libmysqlclient-dev	package	
• Description:	This	package	contains	binaries	used	by	the	application	to	act	as	a	client	of	the	MariaDB	

database.		

Design	Document	 	 2016-2017	

	

6	Scheduling	Your	Horizons	
	

4.1.1.5 Python	Packages	
• Source:	PyPy	repository.	The	packages	installed	are	specified	in	the	requirements.txt	file.	
• Description:	The	application	needs	various	Python	modules.	These	modules	are	installed	directly	into	

the	Docker	image	during	build	time.	

4.1.1.6 Base	Image:	mariadb	
• Source:	https://hub.docker.com/_/mariadb/		

Description:	The	official	base	image	for	MariaDB.	It	comes	with	MariaDB	pre-installed.	The	MariaDB	
database	resides	on	a	separate	image	from	the	main	application.		
	

4.1.2 Host	Environment	
	

The	host	environment	can	vary	greatly	since	this	is	a	Docker	application.	See	Section	3	for	the	operating	
systems	supported	at	the	time	of	this	writing.	For	an	up	to	date	list	of	the	supported	operating	systems	see	
https://docs.docker.com/engine/installation/#platform-support-matrix	.			

		
	 	

Design	Document	 	 2016-2017	

	

7	Scheduling	Your	Horizons	
	

4.2 Development	Environment	Setup	
	
	 Development	on	the	application	was	done	on	macOS	systems.	The	following	describes	how	the	
development	environment	was	set	up:	
	
1) Install	Git	

• Description:	Git	is	the	main	version	control	system	used	in	the	development	of	the	application.	For	more	
information	on	using	Git	see	https://git-scm.com/	.	There	are	several	ways	to	use	Git:	built-in	IDE	
functionality,	GUI	applications	like	Source-Tree,	and	the	Git	CLI	(Command	Line	Interface).	Developers	
are	free	to	choose	how	they	interact	with	the	Git	repository,	but	we	highly	recommend	using	the	raw	
CLI.	It	is	more	difficult	to	learn	but	also	offers	more	control	and	transparency.		

• Installation:	
o If	you	are	running	OSX	10.9	or	greater	then	simply	run	the	command	"git".	This	initiates	the	

install	process	using	XCode	tools.	
o For	installation	instructions	on	older	versions	of	macOS,	see	https://git-

scm.com/book/en/v2/Getting-Started-Installing-Git	.	
2) Install	Python	3	and	Pip	

• Description:		
o Python	3:	At	the	time	of	this	writing	the	default	Python	version	installed	on	macOS	is	Python	2.7.	

This	system	uses	Python	3,	so	it	needs	to	be	installed	manually.	
o Pip:	Pip	is	the	package	manager	for	Python.	It	is	used	to	install,	update,	and	manage	python	

packages.	
• Installation:	

o We've	found	the	best	way	to	manage	many	development	packages	on	macOS	is	through	
Homebrew.	If	you	do	not	have	Homewbrew	installed	see	https://brew.sh/	for	installation	
instructions.	

o Once	you	have	Homebrew	installed,	run	"brew install python3".	This	will	install	both	
Python3	and	Pip.	

3) Install	Virtualenv	
• Description:	

o Virtualenv	is	used	to	manage	simple	"virtual	environments"	for	Python	projects.	It	will	allow	you	
to	have	different	versions	of	packages	used	on	different	projects	running	in	the	same	system.	For	
more	information	on	Virtualenv	see	https://virtualenv.pypa.io/en/stable/.		

• Installation:	
o With	Pip	installed	(step	2)	run	"pip install virtualenv".	

4) Install	MySQL	and	MySQL	Client	Libraries	
• Description:	

o Although	the	production	application	uses	MariaDB,	either	MariaDB	or	MySQL	can	be	used	
interchangeably.	For	the	development	environment,	we	installed	a	local	version	of	MySQL	since	
MySQL	had	better	support	on	macOS	than	MariaDB	at	the	time	of	development.		

• Installation:	
o With	Homebrew	installed	(Step	1)	run	"brew install mysql".	

	

Design	Document	 	 2016-2017	

	

8	Scheduling	Your	Horizons	
	

5) Get	the	Application	Code	
• Description	

o The	code	for	the	application	while	developing	this	project	was	stored	in	a	Git	repository	using	
GitHub.	This	repository	may	not	be	available	after	Spring	2017,	and	instead	you	may	need	to	
download	the	code	from	a	CD,	flash	drive,	or	other	storage	system.	

• Installation	
o Using	GitHub:		

§ Open	the	terminal	and	navigate	to	the	directory	where	you	want	to	store	the	code.	
§ Run:	"git pull https://github.com/slick9115/SchedulingYourHorizons.git"	

o From	Another	Storage	Source	
§ If	installing	from	another	storage	source,	copy	the	root	directory	of	the	project	to	the	

directory	you	plan	to	work	from	on	your	machine.	
6) Create	the	Application	Virtual	Env	

• Description	
o Setting	up	a	virtualenv	is	good	practice	when	developing	Python	applications.	It	helps	minimize	

dependency	issues	when	working	on	multiple	projects	on	the	same	machine.	
• Installation	

o Open	the	terminal	and	navigate	into	the	root	directory	of	the	application,	wherever	it	was	
installed	on	your	system	in	step	5.	

o From	the	command	line	run	"virtualenv venv".	This	will	create	a	folder	called	"venv"	in	the	
root	directory.	

7) Install	Python	Dependencies	
• Description	

o The	application	requires	a	handful	of	Python	dependencies	that	are	defined	in	the	
requirements.txt	file.	

• Installation	
o Open	the	terminal	and	navigate	to	the	root	directory	of	the	project.	
o Run	"source	venv/bin/activate".	This	activates	the	virtualenv	for	this	project.	
o Next	run	"pip install -r web/requirements.txt".	This	will	install	all	required	Python	

packages.		
	 	

Design	Document	 	 2016-2017	

	

9	Scheduling	Your	Horizons	
	

4.3 Development	Workflow	
	

	 This	section	describes	the	development	workflow	used	by	the	team	for	developing	this	application.	This	
already	assumes	all	the	steps	in	Development	Environment	Setup	(Section	4.2)	have	been	followed.	
	
1) Set	Up	a	Test	Database	

• 	Description	
o Each	developer	uses	their	own	test	database.	If	you	already	have	a	working	test	database	

installed	on	your	development	machine	you	may	skip	this	step.		
• Instructions	

o Navigate	to	the	root	directory	of	the	project.	
o Turn	on	virtualenv	with	the	command	"source venv/bin/activate"	
o Run	"python3 manage.py makemigrations"	
o Run	"python3 mange.py migrate"	

	
2) Turn	on	test	Server.	

• Description	
o Running	the	test	server	allows	the	developer	to	immediately	see	the	effects	of	changes	made	to	

the	code.	
• Instructions	

o Navigate	to	the	root	directory	of	the	project.	
o Turn	on	the	virtualenv	with	the	command	"source venv/bin/activate"	
o Turn	on	the	Django	server	by	running	the	command	"python3 manage.py runserver"	
o Visit	http://127.0.0.1:8000/signup/student	and	verify	that	the	student	signup	page	is	displayed.	

	
3) Commit	Changes	

• Description	
o After	making	some	desired	changes	to	the	code	you	commit	those	changes	using	Git.	For	more	

information	on	using	Git	see	https://git-scm.com/book/en/v2/Getting-Started-Git-Basics	.	
• Instructions	

o Add	your	changes	using	"git add [file 1] [file 2] …"	
o Commit	your	changes	using	"git commit"	

	
4) Push	Changes	to	the	Git	Repository	

• Description	
o After	committing	changes,	you	push	them	to	the	shared	repository	so	that	teammates	can	pull	

the	changes.	This	step	is	optional	and	requires	your	team	have	a	git	repository.	
• Instructions	

o Run	"git push origin [name_of_branch]"	
	

	 	

Design	Document	 	 2016-2017	

	

10	Scheduling	Your	Horizons	
	

5 Production	Deployment	
	

This	section	outlines	how	to	deploy	the	application	to	a	Linux	server.	The	following	steps	are	all	run	from	
the	Linux	server	you	plan	to	deploy	to.	They	assume	you	have	already	downloaded	the	code	related	to	the	
application,	which	should	be	provided	to	you	on	a	CD	or	flash	drive.	

	
1) Install	and	Start	Docker	

• Description	
o The	application	runs	on	Docker.	For	more	information	on	Docker	see	https://www.docker.com/.	

• Installation	
o Installation	is	slightly	different	on	each	operating	system.	For	your	specific	system	please	see	the	

documentation	at	https://docs.docker.com/engine/installation/	.	
o Make	sure	that	the	installed	Docker	version	is	>=	17	

§ To	check	your	Docker	version	run	“docker version“	from	the	command	line.	
o Make	sure	that	docker-compose	is	also	installed.	At	the	time	of	this	writing,	docker-compose	

comes	installed	with	Docker,	but	in	future	releases	this	may	not	be	the	case.	
§ Try	running	“docker-compose”	from	the	command	line.	If	the	command	is	not	found	

install	it	using	the	instructions	at	https://docs.docker.com/compose/install/.		
2) Install	Systemd	

• Description	
o Systemd	is	used	to	manage	daemon	processes,	and	most	importantly	in	this	case,	restart	Docker	

and	the	application	if	the	server	is	reset	or	updated.	
• Installation	

o Often	modern	Linux	systems	come	with	Systemd	pre-installed.	If	not,	contact	your	system	
administrator	to	have	it	installed	on	the	server.	
	

3) Navigate	to	the	Application	Root	
• Description	

o The	startup	script	needs	to	be	run	from	root	directory	of	the	application.	
• Directions	

o Navigate	to	the	root	directory	of	the	project	through	the	“cd”	command.	
	

4) Run	the	Start	Script	
• Description	

o The	logic	to	start	the	application	is	contained	within	the	file	/scripts/run_application.sh	
• Installation	

o Make	sure	you	execute	the	command	below	from	the	root	directory	of	the	application.		
o Run	“sudo bash ./scripts/run_application.sh”.	Make	sure	this	command	is	run	from	the	

root	directory	of	the	project.	
o If	this	command	has	not	been	run	before	it	will	take	an	extended	length	of	time	to	build	the	

application	image.	
	
	
	 	

Design	Document	 	 2016-2017	

	

11	Scheduling	Your	Horizons	
	

6 Application	Guide	

6.1 Overview	
	

This	section	gives	a	high-level	overview	of	the	objects,	files,	and	major	components	of	the	Django	
application.		
	
	 The	System	Architecture	(Subsection	2)	describes	the	overall	system	architecture.		
	
	 The	Settings	and	Configuration	(Subsection	3)	describes	the	different	files	used	for	overall	application	
configuration.	
	
	 The	Registration	(Subsection	4)	contains	an	overview	of	the	major	classes	and	functions	involved	in	the	
Registration	application.	
	
	 The	Scheduling	and	Report	Generation	(Subsection	5)	describes	the	classes	and	files	involved	in	the	
Scheduling	and	Report	Generation	application.	
	
	 The	reCAPTCHA	Implementation	(Subsection	6)	describes	the	reCAPTCHA	implementation	used	
throughout	the	system.	

	
	 	

Design	Document	 	 2016-2017	

	

12	Scheduling	Your	Horizons	
	

6.2 System	Architecture	
	

The	application	will	follow	the	standard	Django	architecture.	The	overall	site	URL	handler	will	receive	
HTTP	requests	and	direct	them	to	the	appropriate	application	based	on	the	request	URL.	The	three	applications	
are:	

• Signup:	(/signup)	The	signup	application	will	contain	forms	that	Participants	will	fill	out	to	sign	up	for	
the	conference.		

• Schedule:	(/schedule)	The	schedule	application	will	allow	Administrators	to	generate	and	modify	the	
conference	schedule,	download	reports,	and	reset	the	system	for	new	registration.			

• Admin:	(/admin)	The	admin	application	will	allow	Administrators	to	access	and	modify	the	database.		
	

Once	a	request	is	routed	to	the	correct	application,	the	application	level	URL	handler	directs	the	request	
to	the	correct	view	object.	These	view	objects	interact	with	various	model	objects	that	act	as	the	interface	
between	the	Python	code	and	the	database.	The	schedule	and	report	view	object	makes	use	of	our	scheduling	
library	via	function	calls	to	generate	the	schedule.	
	

	
	 	

Design	Document	 	 2016-2017	

	

13	Scheduling	Your	Horizons	
	

6.3 Settings	and	Configuration	
	

There	are	a	handful	of	global	settings	and	configurations	that	affect	the	Django	application,	the	server	
configuration,	and	the	overall	operation	of	the	system.	These	settings	are	defined	through	either	environment	
variables	or	through	settings	files.	
	

6.3.1 Environment	Variable	Configuration	
	
	 The	following	are	environment	variables	used	by	the	application.	The	standard	Docker	configuration	
comes	with	these	values	pre-set	within	the	docker-compose.yml	file.	They	should	be	changed	within	this	file,	
not	on	the	host	server.		
	

• SYH_KEY_FILE:	The	path	of	the	key	file	within	the	system.	This	variable	should	be	automatically	set	
within	the	docker-compose.yml	file	through	the	run-application.sh	script.	See	Section	6.3.2.1	for	a	
description	of	the	key	file.	
	

• DJANGO_SETTINGS_FILE:	The	location	of	the	settings.py	file	within	the	Docker	container.	Unless	the	
directory	structure	of	the	application	is	changed	this	should	always	be	“src_django.settings.settings”.		
	

• SYH_PROD:	Defines	what	mode	the	application	will	run	in.	If	it	is	set	to	“True”	then	the	application	will	
run	in	production	mode,	using	the	prod.py	file	for	settings.	Otherwise	it	will	run	in	production	mode,	
using	dev.py	for	settings.	In	the	docker-compose.yml	file	this	is	automatically	set	to	“True”.		
	

• PYTHONPATH:	Defines	where	within	the	container	Python	searches	for	modules.	It	must	contain	the	
path	to	the	root	of	the	/web	directory	of	the	application.	It	is	already	set	in	docker-compose.yml	and	
doesn’t	need	to	be	changed	unless	the	directory	structure	of	the	Docker	container	is	changed.	

	
• APP_HOST:	Specifies	the	canonical	host	name	of	the	application	used	throughout	the	application	and	

within	the	HTTP	server	configurations.	This	variable	must	be	set	to	the	fully	qualified	domain	name	as	
created	on	the	DNS.	For	example,	if	the	clients	access	the	application	by	going	to	
https://cscdevprod04.txwes.edu	then	this	variable	must	be	set	to	“cscdevprod04.txwes.edu”.	This	
environment	variable	is	automatically	set	when	running	run-application.sh.	 	

Design	Document	 	 2016-2017	

	

14	Scheduling	Your	Horizons	
	

6.3.2 File	Configuration	
	
	 The	system	has	been	created	to	use	configuration	files	that	affect	operation	where	possible.	This	
subsection	summarizes	those	files	and	some	of	the	more	important	configuration	options	they	control.		
	
6.3.2.1 	Keyfile.txt	

	
	 The	keyfile.txt	file	is	used	to	pass	important	and	sensitive	information	to	the	application.	It	should	reside	
outside	of	the	Docker	container	and	be	modified	by	the	administrator	deploying	the	application.	
	
	 The	format	of	the	key	file	consists	of	lines	where	each	line	represents	a	different	key-value	pair.	The	
format	is	key:value,	with	no	whitespaces.	The	default	keyfile.txt	is	in	the	correct	format	with	dummy	values.	
	

The	following	are	the	keys	that	are	required	for	the	keyfile.txt	file	along	with	descriptions	about	each	
key:	
	

• SECRET_KEY:	The	secret	key	of	the	Django	application.	This	key	is	used	to	provide	cryptographic	signing	
within	the	application.	For	more	information	on	Django’s	built	in	cryptographic	signing	see	
https://docs.djangoproject.com/en/1.10/topics/signing/	.	For	more	information	on	the	SECRET_KEY	
Django	setting	see	https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-SECRET_KEY		

• CAPTCHA_SECRET:	The	secret	key	used	to	securely	communicate	with	Google	during	reCaptcha	
authentication	in	production	mode.	For	more	information	on	the	reCAPTCHA	implementation	see	
Section	6.6.	

• CAPTCHA_PUBLIC:	The	public	key	used	for	reCAPTCHA	authentication.	For	more	information	on	
reCAPTCHA	see	Section	6.6.	

• DB_NAME:	The	name	of	the	database	the	application	is	connected	to.	This	is	used	by	the	application	to	
access	the	database.	

• DB_USER:	The	user	name	that	the	application	will	use	to	access	the	database.	
• DB_PASSWORD:	The	password	of	the	DB_USER	that	the	application	will	use	to	interact	with	the	

database.	
• DB_HOST:	The	host	of	the	database.	If	the	database	resides	on	the	same	server	use	“localhost”.	
• DB_PORT:	The	port	that	the	application	will	use	to	connect	to	the	database.	

	
	
	 	

Design	Document	 	 2016-2017	

	

15	Scheduling	Your	Horizons	
	

6.3.2.2 Django	Application	Settings	
	

Settings	specific	to	the	Django	application	are	all	specified	within	the	/web/src_django/settings	
directory.	This	folder	contains	settings	that	a	developer	or	system	administrator	with	Django	experience	could	
modify	to	customize	the	application.		

The	Django	application	operates	differently	when	running	in	production	mode	vs.	running	in	
development	mode.	To	distinguish	between	these	two	cases,	the	main	settings	file	
(/web/src_django/settings/settings.py)	doesn’t	itself	contain	any	variables	the	way	a	standard	settings.py	file	
does	in	Django.	Instead,	it	determines	the	mode	(production	or	development)	that	the	application	will	run	in	
and	then	loads	the	settings	accordingly.	It	does	this	by	checking	the	value	of	the	SYH_PROD	environment	
variable.	If	this	variable	is	set	to	“True”,	then	the	settings	for	production	mode	are	loaded	from	the	file	
/web/src_django/prod.py.	Otherwise	the	settings	for	development	mode	are	loaded	from	the	file	
/web/src_django/dev.py.		
	

For	a	complete	description	of	all	Django	defined	settings	variables,	see	
https://docs.djangoproject.com/en/1.10/ref/settings/	.		
	

6.4 Registration	
	
	 The	Registration	application	is	responsible	for	all	tasks	related	to	registering	participants	for	the	event.	It	
is	not	completely	logically	separate	from	the	rest	of	the	application,	but	most	of	its	functions	are	independent	
of	the	operations	inside	the	Scheduling	and	Report	Generation	and	Admin	applications.	
	

6.4.1 URL	Mapping	
	

URL	mapping	in	the	global	application	is	defined	through	the	/src_django/urls.py	file.	All	requests	
through	/signup/{form	or	page}	are	redirected	to	the	Registration	application.	Below	are	the	possible	URLs	the	
application	will	respond	to.	
	
URL	Relative	to	Fully	Qualified	Domain	Name	 View	Class	(see	Class	Diagram)	
/signup/student	 AddStudentView	
/signup/groupleader	 AddGroupLeaderView	
/signup/presenter	 AddPresenterView	
/signup/volunteer	 AddAdultView	
/signup/cancel	 CancelStudentView	
/signup/reset	 ResetSystemView	
	
	
	 	

Design	Document	 	 2016-2017	

	

16	Scheduling	Your	Horizons	
	

	

6.4.2 View	Classes	
	

The	main	logic	of	the	application	is	contained	in	the	view	classes.	These	are	subclasses	of	Django’s	built	
in	TemplateView	class.		
	

	
	
6.4.2.1 AddStudentView	

• Description:	
o Controls	the	logic	for	registering	Students	for	the	event.	

• File:	/web/registration/views/add_student_view.py	
• Class	Methods	

o get:	Overrides	the	TemplateView	get	method.	It	requests	the	Topics	and	Schools	from	the	
database,	uses	them	to	template	the	student	registration	form	(student-registration.html),	
and	then	returns	the	templated	response.	If	registration	is	closed,	it	redirects	to	the	
RegistrationClosedView.	

o post:	Overrides	the	TemplateView	post	method.	It	handles	interpreting	the	post	request,	
attempting	to	add	the	student,	and	redirecting	to	the	appropriate	success	or	failure	page.		

	
	

Design	Document	 	 2016-2017	

	

17	Scheduling	Your	Horizons	
	

6.4.2.2 AddGroupLeaderView	
• Description	

o Controls	the	logic	for	registering	Group	Leaders.	
• File:	/web/registration/views/add_group_leader_view.py	
• Class	Methods	

o get:	Overrides	the	TemplateView	get	method.	It	doesn’t	require	any	database	access	and	
returns	the	Group	Leader	registration	page	(group-leader-form.html).	

o post:	Overrides	the	TemplateView	post	method.	It	handles	interpreting	the	post	request,	
attempting	to	add	the	group	leader,	and	redirecting	to	the	appropriate	success	or	failure	
page.	

	
6.4.2.3 AddPresenterView	

• Description	
o Controls	the	logic	of	registering	Presenters.	

• File:	/web/registration/views/add_presenter_view.py	
• Class	Methods	

o get:	Overrides	the	TemplateView	get	method.	It	requires	database	access	to	retrieve	
Workshops	and	Topics.	It	returns	the	Presenter	registration	page	(presenter-
registration.html).	

o post:	Overrides	the	TemplateView	post	method.	It	handles	interpreting	the	post	request,	
attempting	to	add	the	presenter,	and	redirecting	to	the	appropriate	success	or	failure	page.	

6.4.2.4 AddAdultView	
• Description	

o Controls	the	logic	for	registering	Adult	Participants.	
• File:	/web/registration/views/add_adult_view.py	
• Class	Methods	

o get:	Overrides	the	TemplateView	get	method.	It	does	not	require	database	access.	It	returns	
the	Adult	Participant	registration	page	(adult-registration.html).	

o post:	Overrides	the	TemplateView	post	method.	It	handles	interpreting	the	post	request,	
attempting	to	add	the	adult	participant,	and	redirecting	to	the	appropriate	success	or	failure	
page.	

	
6.4.2.5 CancelStudentView	

• Description	
o Controls	the	logic	for	canceling	students.	

• File:	/web/registration/views/cancel_student_view.py	
• Class	Methods	

o get:	Overrides	the	TemplateView	get	method.	It	does	require	database	access	to	check	that	
the	unique	URL	used	to	access	the	page	corresponds	to	an	actual	Student.	It	returns	the	
student	cancellation	page	(student-cancellation.html).	

o post:	Overrides	the	TemplateView	post	method.	It	handles	interpreting	the	post	request,	
attempting	to	remove	the	student,	and	redirecting	to	the	appropriate	success	or	failure	
page.	

	

Design	Document	 	 2016-2017	

	

18	Scheduling	Your	Horizons	
	

6.4.2.6 RegistrationClosedView	
• Description	

o Used	to	display	the	registration	closed	page	(registration-closed.html)	
• File:	/web/registration/views/registration_closed_view.py	
• Class	Methods	

o get:	Overrides	the	AddStudentView	get	method.	It	does	not	require	database	access.	It	
returns	the	registration	closed	page.	(registration-closed.html)		

6.4.3 Database	Schema	

	

Design	Document	 	 2016-2017	

	

19	Scheduling	Your	Horizons	
	

6.5 Schedule	and	Report	Generation	
	

The	Scheduling	and	Report	Generation	application	is	responsible	for	generating	and	displaying	the	
schedule,	generating	reports,	and	provide	access	to	the	system	reset.	
	

6.5.1 URL	Mapping	
	
		 URL	mapping	in	the	global	application	is	defined	through	the	/src_django/urls.py	file.	All	requests	
through	/schedule	are	redirected	to	the	Schedule	and	Report	Generation	application.	This	makes	use	of	the	
login_required	method,	which	forces	this	page	to	require	a	login.	
	

6.5.2 View	Classes	
	
6.5.2.1 ScheduleReportView	

• Description	
o The	only	view	the	Schedule	and	Report	Generation	application.		

• 	File	
o /web/schedule/views/schedule_report_view.py	

• Class	Methods	
o get:		Overrides	the	TemplateView	get	method.	It	requires	database	access	to	retrieve	Workshops	

and	Topics.	It	returns	the	main	Scheduling	and	Registration	page	(report-gen.html).		
o post:	Overrides	the	TemplateView	get	method.	It	parses	the	post	request	and	directs	the	request	

to	generateNewSchedule,	gnerateReports,	moveStudent,	addRemoveStudent,	or	printSchedule.	
o generateNewSchedule:	The	method	called	when	the	user	requests	to	generate	a	new	schedule.	

It	accesses	the	database,	generates	the	schedule,	saves	it	to	the	database,	and	returns	schedule	
and	report	view	page	with	the	updated	schedule.	

o generateReports:	The	method	called	when	the	user	requests	reports.	It	parses	out	the	requested	
reports	from	the	post	request,	generates	the	appropriate	reports,	and	returns	an	Http	request	
containing	a	zip	file	with	the	requested	reports.	

o moveStudent:	This	method	is	called	when	the	user	requests	to	move	a	student	from	one	group	
to	another.	It	attempts	the	move,	saves	the	change	to	the	database,	and	updates	the	page	to	
show	the	change.	

o addRemoveStudent:	The	method	called	when	a	user	requests	to	add	or	remove	a	student.	It	
attempts	to	add	or	remove	the	student,	saves	the	change	to	the	database,	and	the	updates	the	
page	to	show	the	change.	

o printSchedule:	The	method	called	when	a	user	requests	to	download	the	schedule.	It	uses	the	
generateNewSchedule	method	to	do	this	and	returns	a	zip	file	containing	the	schedule.	

o getFirstPercent:	An	auxiliary	method	used	to	get	the	number	of	students	who	get	to	see	their	
first	choice	as	a	percent.	

o getFirstAndSecondPercent:	An	auxiliary	method	used	to	get	the	number	of	students	who	get	to	
see	their	first	or	second	choice	as	a	percent.	

	 	

Design	Document	 	 2016-2017	

	

20	Scheduling	Your	Horizons	
	

6.6 reCAPTCHA	Implementation	
	
	 The	reCAPTCHAs	were	implemented	to	prevent	bots	from	spamming	the	registration	forms.	The	
reCAPTCHA	implementation	contains	code	on	both	the	client	and	server	side.	The	implementation	of	the	
reCAPTCHA	requires	both	a	site	key	and	secret	key,	which	has	been	provided	by	Google	(see	Section	6.3.2.1	to	
see	where	these	keys	are	specified).	The	current	implementation	uses	secret	and	site	keys	issued	to	the	Google	
account	eyhconfirmation@gmail.com.	
	

6.6.1 Client-Side	Implementation	
	
	 Each	registration	form	lists	Google’s	reCAPTCHA	JavaScript	code	as	a	dependency	in	the	form’s	HTML.	
This	code	can	be	found	at	https://www.google.com/recaptcha/api.js.	A	div	with	the	class	“g-recaptcha”	is	
placed	in	the	HTML	to	represent	the	reCAPTCHA.	This	div	also	contains	a	“site	key”	provided	by	Google	that	
allows	Google	to	identify	which	application	is	using	the	reCAPTCHA.	This	key	is	unique	to	each	development	
environment	and	is	stored	in	Django’s	settings	module.	When	the	user	submits	the	form,	the	form’s	JavaScript	
checks	to	see	if	the	reCAPTCHA	has	been	completed	by	checking	to	make	sure	the	key	is	not	an	empty	string.	If	
the	key	is	an	empty	string,	an	alert	telling	the	user	to	complete	the	reCAPTCHA	appears.	If	the	key	is	not	empty,	
the	JavaScript	then	puts	the	key	into	the	value	of	a	hidden,	uneditable	input	field	with	the	id	“captcha”	so	the	
key	can	then	be	passed	in	the	POST	request	to	the	Django	server.	

	

6.6.2 Server-Side	Implementation	
	
	 The	server-side	implementation	of	each	registration’s	reCAPTCHA	can	be	found	in	the	registration	
form’s	corresponding	view	file.	First,	a	POST	request	is	sent	to	Google	(URL	
https://www.google.com/recaptcha/api/siteverify)		which	contains	both	the	applications	secret	key	and	the	key	
provided	by	the	client	side’s	web	browser.	Google’s	servers	then	send	back	a	response	in	JSON	format.	The	
JSON	response	will	contain	a	Boolean	titled	“success”	indicating	whether	the	reCATPCHA	has	successfully	
validated	the	user.	If	the	user	was	validated,	then	we	continue	the	post	function	as	normally.	Otherwise,	we	
render	an	error	page	to	the	user	and	return	out	of	the	function.	

	
	

	 	

Design	Document	 	 2016-2017	

	

21	Scheduling	Your	Horizons	
	

	
7 Glossary	of	Terms	
	

Term	 Phrase	/	Definition	

EYH	 Expanding	Your	Horizons	

STEM	 Science	Technology	Engineering	and	Math	

SYH	 Scheduling	Your	Horizons	

TCU	 Texas	Christian	University	

TxWes	 Texas	Wesleyan	University	

WSGI	 Web	Server	Gateway	Interface.	Used	to	connect	an	http	server	
and	the	Django	application.	

reCAPTCHA	
User	validation	tool	provided	by	Google.	For	more	information	see	

https://www.google.com/recaptcha/intro/.		

View	Class	

Python	class	that	connects	the	frontend	forms,	databases,	and	
models.	For	more	information	see	

https://docs.djangoproject.com/en/1.11/topics/class-based-
views/.		

Git	
Free	version	control	software	(VCS)	application.	For	more	

information	see	https://git-scm.com/.		
	

