
iSound: A Smartphone Based Intelligent Sound

Fusion System for the Hearing Impaired

Kathryn Grebel1, Duy Dang1, Liran Ma1, Donnell Payne1, and Brent Cooper2

1 Department of Computer Science, Texas Christian University,
Fort Worth, TX, USA

2 Department of Psychology, Texas Christian University,
Fort Worth, TX, USA

Abstract. High quality hearing aids can come with a premium price
tag. As a result, it can be challenging for a hearing impaired individ-
ual to obtain a hearing aid. Without such a device, the individual may
struggle to communicate with others. To address this challenge, we aim to
develop a smartphone-based hearing aid application (termed as iSound)
that can serve as an alternative option for hearing impaired individuals.
The iSound app is designed to have the capability to adapt to vari-
ous scenarios with different requirements. Specifically, iSound can utilize
both gain (volume) increases and frequency compression techniques as
required. We implement iSound on an off-the-shelf Android-based smart-
phone. The current implementation of iSound is demonstrated to be able
to compress signals to a desired range of frequencies as specified, with
some distortions and delays. We believe iSound can be a viable alterna-
tive for hearing impaired individuals.

1 Introduction

Successful communication depends on all participating parties having the ability
to hear as well as speak. This is not always the case because approximately 8.6%
of the US population is classified as hearing impaired and in need of a hearing
assistance device [1]. In addition, our auditory systems begin to deteriorate as
we age, making it difficult to hear sounds at higher frequencies. Hearing aids are
traditionally adopted to reduce the impact of hearing impairments.

Recently, there have been multiple techniques proposed to increase hearing
aid functionality. Examples of these techniques include frequency compression,
amplification, and the ability to adapt to different environments. Research shows
that hearing aids utilizing frequency compression techniques generally increase
the perception of speech better than the devices that do not [2]. The implemen-
tation of these techniques can produce a higher quality hearing aid.

However, these higher quality hearing aids can be cost prohibitive. As a re-
sult, many hearing impaired individuals might still struggle to obtain an effective
hearing aid. The lack of affordable options motivates us to develop an alterna-
tive solution of comparable quality. Smartphones have become ubiquitous and
a vital part of people’s daily lives. Today’s smartphones have the capabilities

2 Kathryn Grebel, Duy Dang, Liran Ma, Donnell Payne, and Brent Cooper

to process and transform sound signals. We aim to develop an app (termed as
iSound) that utilizes these capabilities to function as a hearing aid. The benefit
of this approach is that a smartphone app can be easily acquired and is relatively
inexpensive.

This paper discusses the design and implementation of iSound on an off-
the-shelf Android-based smartphone. With the individual users needs in mind,
we develop a smartphone app that determines the bandwidth of frequencies
where his/her hearing capabilities are maximized. During conversations, audio
signals are received and modulated to within the aforementioned bandwidth
and amplified when necessary. This could afford hearing impaired individuals
the ability to fully partake in communication.

The remainder of the paper is organized as follows. We start by discussing
the related work in Section 2. Next, we review our design in Section 3. We
then explain our current system implementation in Section 4. Following that,
we report our evaluation results in Section 5 and finally, we consider future
improvements to the design and conclude the paper in Section 6.

2 Related Work

The related information necessary to develop and implement the hearing aid app
consists of three basic parts: frequency compression techniques, digital signals,
and pitch shifting. Frequency compression refers to reducing all of the frequencies
in a bandwidth (i.e. range of frequencies) into a compressed, target bandwidth.
A digital signal is a representation of a continuous sound wave consisting of
discrete sample points. Pitch shifting refers to manipulating the signal to adjust
its pitch for the purpose of frequency compression.

2.1 Frequency Compression Techniques

Modulating the frequencies requires that they are reduced so that all are within
the desired range. This is accomplished by using either frequency transposition,
linear frequency compression, or nonlinear frequency compression. Frequency
transposition reduces every frequency value outside of the user’s range by the
same quantity in Hertz (Hz). When a frequency is reduced using transposition
it can overlap a value already present in the target range. This overlap can cause
distortions.

Linear frequency compression reduces every frequency value by a set ratio.
We call this ratio the frequency scaling ratio, r, and calculate it as follows:

r =
c

4000Hz
. (1)

The variable c is the cutoff frequency for the user’s bandwidth of hearing capa-
bility (i.e., the maximum frequency that the user can hear with relative clarity),
and 4000Hz is the maximum frequency of the Human Voice Frequency Range

iSound 3

(HVFR). Thus, for every input frequency value, f0, the output frequency value,
f1, is given by:

f1 = rf0. (2)

Nonlinear frequency compression is similar to linear frequency compression in
that they both utilize a frequency scaling ratio. However, nonlinear compression
is predicated on the notion that hearing loss tends to be more prevalent in
higher frequency bandwidths and less likely to effect lower frequency bandwidths.
Certain bandwidths do not require the same amount of compression as do others,
thus the same frequency scaling ratio should not be applied to every bandwidth.
The HVFR is broken into the different sub-bandwidths based on the frequency
regions found in an audiogram, and a scaling ratio is calculated for each. The
ratio for the highest sub-band is calculated in the same manner as the ratio
used for linear frequency compression. The remaining ratios are derived using
a combination of the initial ratio value and the level of hearing loss for each
sub-band.

2.2 Digital Signals

A digital signal is a sequence of discrete values/sample points representative of
a sound wave. The number of samples used to represent one second of a sound
wave is determined by the sampling rate. For example, using a sampling rate
of 44, 100Hz means that 44, 100 sample points are used to represent one second
of sound. When the sampling rate is 22, 050Hz the same number of samples
represent two seconds of sound. Thus, given a sampling rate, a signals duration
is measured by the number of its representative sample points.

2.3 Pitch Shifting

François discusses a pitch shifting method in [3]. Pitch shifting is the process of
adjusting the frequency of a signal without affecting its duration. The method
detailed in the article is mainly focused on pitch shifting for electric guitar sig-
nals which behave differently than vocal signals. The method utilizes Fourier
transforms and inverse Fourier transforms which can be difficult to code and
computationally inefficient. Nevertheless, the algorithm introduces the idea for
effectively pitch shifting an audio signal.

3 Design

Our primary objective is to compress the frequency bandwidth of the input
audio signals to within a target bandwidth. In addition, we want to maintain
an acceptable latency period between input and output audio signals of less
than 50ms and incur as few distortions as possible created by the frequency
compression process. Because iSound is primarily for communication purposes,
our main concern is with speech signals. We develop our design for the Human
Voice Frequency Range (HVFR) 85Hz − 4000Hz, i.e., the maximum frequency
that we are concerned with is 4000Hz.

4 Kathryn Grebel, Duy Dang, Liran Ma, Donnell Payne, and Brent Cooper

3.1 Frequency Compression Parameter

We want to incorporate the user’s specific hearing capabilities in order to adapt
the app to fit his/her individual requirements. We utilize techniques similar to
those that audiologists use to fit a patient’s hearing aid. A person’s hearing
is evaluated with an audiogram (i.e., a logarithmic plot of frequency (Hz) vs
hearing threshold (dB)). A sample audiogram is depicted in Fig. 1. The hearing
threshold is the minimum sound level, measured in dB, required to hear a given
frequency. Depending on the hearing threshold, a person’s hearing ability for
that frequency region is classified as normal hearing, mild loss, moderate loss,
moderately-severe loss, severe loss, or profound loss. The app uses the infor-
mation in the audiogram to establish a target bandwidth of frequencies corre-
sponding to the user’s hearing capabilities. This is accomplished by choosing the
frequency regions that are classified as normal hearing or minimal loss.

250 500 1000 2000 4000 8000

Frequency in Hertz

-10

0

20

40

60

80

100

110H
ea

ri
ng

 T
hr

es
ho

ld
 L

ev
el

 in
 d

B

Fig. 1. Sample Audiogram

3.2 Frequency Compression Scheme

We utilize a frequency compression technique to condense all of the frequencies
in the HVFR to within the target bandwidth previously discussed. In particular,
linear frequency compression is employed in our design because of the relative
ease in implementation and the desire to maintain acceptable latency values. A
signal’s frequency is inversely related to the length of its period, T , i.e., f = 1

T
.

Thus, a simple way to reduce the frequency of the input signal is to increase the
length of its period by an amount proportional to the frequency scaling ratio

iSound 5

discussed in Section 2.1. Unfortunately, this results in an output signal that has
a longer duration than the input signal, which can cause the audio to be visually
out of sync.

Thus, the linear frequency compression is carried out using a process known
as pitch shifting [3]. Pitch shifting is based on the concept of increasing the length
of a signal’s period as mentioned above. However, steps are taken to preserve
the duration of the signal. Since we are working with digital signals, preserving
the duration means preserving the number of representative sample points as
discussed in Section 2.2.

We know that increasing the length of a signal’s period reduces its frequency,
but also causes an increase in its duration. In order to preserve the signal’s
duration, an intermediary signal is created so that it has a duration equal to
the product of the frequency scaling ratio and the duration of the input signal.
The length of the period of the intermediary signal can then be increased by
an amount proportional to 1 minus the scaling ratio (i.e., 1− r). This produces
an output signal equal in duration to the input signal that also has a reduced
frequency.

The pitch shifting process involves two principal steps: time scaling and up-
sampling. A major benefit of utilizing pitch shifting in the design is that it is
easily customizable. That is, there is more than one way for implementation.
This provides us with the ability to choose an implementation that best meets
our stated goals.

Time Scaling The intermediary signal is created by utilizing a time scaling
technique (i.e., the method of adjusting the duration, or number of sample points,
of a signal without affecting its frequency). In general, the number of sample
points in (i.e., the length of) the intermediary signal, l1, is given by multiplying
the length of the input signal, l0, by the scaling ratio r:

l1 = rl0. (3)

The intermediary signal can be created with one of the following three time
scaling techniques:

– The first technique is to directly collect the first l1 sample points of the input
signal as the intermediary signal. The rest of the input signal is discarded.
This technique requires the least computation among the three techniques;

– The second technique is Pitch Synchronous Overlap and Add (PSOLA)
where a signal of a single frequency is divided into a sequence of overlapping,
periodic segments. Each segment is one period in length and is partially
shared with its neighboring segments. Because the segments overlap each
other by the exact same amount, adding or removing a segment does not af-
fect the frequency of the overall signal. The duration of a signal is decreased
by removing one or more of these overlapping segments. Since PSOLA is
a time-domain-based approach, the computations are relatively simple and
efficient [4];

6 Kathryn Grebel, Duy Dang, Liran Ma, Donnell Payne, and Brent Cooper

– iii) The third technique is phase vocoder. It is a frequency-domain-based
technique that utilizes an overlap-add approach like PSOLA. Instead of us-
ing pitch synchronization, this technique modifies the signal’s phases in its
short-time Fourier Transform to achieve synchronization between the over-
lapping segments. The phase vocoder can compute more complex signals
than PSOLA, but it is not as computationally efficient as PSOLA [5].

Up-sampling The signal is then up-sampled (i.e., the process of inserting ad-
ditional sample points to increase the duration of the signal and lower its fre-
quency) to produce the output signal. Up-sampling can be accomplished using
one of the following three techniques:

– Point insertion by averaging is the process of inserting a new point every m

points in the intermediary signal, where m is calculated as follows

m =
r

1− r
. (4)

The value of the inserted point is calculated by averaging the two points
adjacent to it.

– Cubic spline interpolation derives a piecewise-defined function, consisting of
3rd degree polynomials, where each piecewise function corresponds to a pair
of points, e.g.,

f(x) =

g1(x) 0 ≤ x ≤ 1
g2(x) 1 ≤ x ≤ 2
...
gn(x) n− 1 ≤ x ≤ n

. (5)

– Lagrange interpolation derives an nth degree polynomial using the formula

Pn(x) =

n
∑

j=0

yj
∏

k 6=j

(x− xk)

(xj − xk)
. (6)

In both cubic spline and Lagrange interpolation, the output signal is created
by using the derived formulas to calculate the desired number of evenly space
representative sample points.

4 Implementation

The current implementation is based on the Android 4.4.2 operating system (Kit
Kat). To be specific, our implementation of iSound is on the Samsung Galaxy
S5 that has a 2.5GHz Quad-Core Processor and 2GB of RAMs. The sampling
rate is set at 44.1kHz, which is equivalent to CD quality audio. The bluetooth
headset utilized for the app is the Logitech Wireless Headset H800. The app’s
implementation can be broken down into two main parts: front end and back
end. The front end (i.e., user interface) is where the user enters his/her specific
hearing requirements. The back end is where the actual signal processing occurs.

iSound 7

4.1 Front End

(a) User input.

User Input

Determine User Cutoff Frequency

Calculate Frequency Scaling Ratio

Settings

(b) User settings.

Fig. 2. Front end.

When the app is launched for the first time, the user is prompted to enter
his/her specific hearing prescription given by the audiologist. Specifically, the
app’s interface has eight separate input fields as shown in Fig. 2(a), one for
every frequency level found on an audiogram. Each level has a corresponding
SeekBar for the user to specify their hearing threshold in decibels (dB). The
possible settings for the SeekBar range from −10 to 110, mirroring an audiogram
as shown in Fig. 1. The app then uses that prescription information to calculate
the user’s settings needed for future signal processing in the back end as shown in
Fig. 2(b). Specifically, the user’s cutoff frequency (i.e., the maximum frequency of
the user’s hearing capability) is determined by evaluating each frequency level’s
class of hearing loss. The lowest frequency level classified as minimal hearing
loss is designated as the user’s cutoff frequency. For example, in Fig. 2(a) the
user’s cutoff frequency is 3, 000Hz. The frequency scaling ratio is calculated
using Eq. 1. Specifically, the scaling ration for Fig. 2(a) is 0.75.

4.2 Back End

When the user runs the app, the back end starts processing the incoming audio
signals as shown in Fig. 3. Sound is picked up by the phone’s microphone and
converted to a digital signal consisting of discrete sample points. These digital
sample points are sent to the app. The app then creates a buffered input signal by
creating an array containing a finite number of sample points. The length of the
array is determined by the minimum number of sample points that the Android
OS requires for a chosen sampling rate. For example, this implementation of the
app buffers input signals as arrays containing 1, 024 sample points because it is
the required minimum for the sampling rate 44.1kHz.

8 Kathryn Grebel, Duy Dang, Liran Ma, Donnell Payne, and Brent Cooper

Buffer Input Signal

Lower Frequency of Signal

Playback Output Signal

Processing

Fig. 3. Back end.

Next, the frequency of the signal is lowered by creating an intermediary signal
and up-sampling it. Specifically, the intermediary signal is obtained by creating
an array consisting of the first l1 points from the input signal, where l1 is cal-
culated using Eq. 3. This method of time scaling is utilized because it is the
simplest to implement and most computationally efficient of the three meth-
ods discussed. Up-sampling the intermediary signal creates the output signal.
The up-sampling is accomplished using either the point insertion by averaging
technique, cubic spline interpolation, or Lagrange interpolation as detailed in
Section 3.2.

Finally, the Android AudioTrack class buffers the output signal in prepara-
tion for playback. The streaming mode of the class pushes each element of the
buffered output signal one-by-one to a queue in the phone’s AudioSink hardware.
The hardware then plays the processed sound for the user.

5 Evaluation

We assess the application’s performance with the following criteria: i) input
frequencies are shifted to within the designated range; ii) latency periods between
input and output audio signals are less than 50ms; iii) distortions created by
the compression process are minimized or eliminated entirely. The simulation
environment is setup such that the user’s maximum cutoff frequency is c =
3000Hz and the frequency scaling ratio is r = 3000Hz

4000Hz
= 0.75.

We test the application’s performance in regards to the first criterion using
a Samsung Galaxy S5, Echo Capture (an Android app that plays and graphs
sound) [6], an online tone generator [7], and an online tuner [8]. The tone gen-
erator produces various, specified frequencies within the HVFR. The phone’s
microphone is held near the computer’s speaker for the purpose of capturing the
generated frequency. After processing the input signal, the app stores the output
signal in a public file on the phone. Echo Capture then plays the contents of the

iSound 9

public file as the input for the online tuner, which gives the frequency of the out-
put signal. We then compute the actual frequency scaling ratio by dividing the
output frequency by the input frequency (note: the ideal scaling ratio is given
above as r), i.e.,

rA =
f1

f0
. (7)

This process is repeated until we obtain 30 pairs of ideal and actual frequency
scaling ratios. We then use the mean absolute error method to evaluate the app’s
performance in producing the expected output frequency. The test data collected
is displayed in Table 5. The calculated mean absolute error is 0.05. We also found
that the actual ratios were very consistent; in 28 of the 30 cases the actual ratio is
0.80, i.e., 0.05 greater than the ideal ratio of 0.75. Further evaluation is necessary
to determine the reason for the discrepancies in the output frequencies as we are
currently unsure of the cause.

Table 1. Frequency Shifting Test Data

Input Frequency Ideal Ratio Detected Frequency Actual Ratio Absolute Difference
(Hz) (rI) (Hz) (rA) (|rA − rI |)

1000 0.75 805.47 0.81 0.06
1500 0.75 1205.94 0.80 0.05
2000 0.75 1597.52 0.80 0.05
2500 0.75 1994.69 0.80 0.05
3000 0.75 2402.92 0.80 0.05
3500 0.75 2799.64 0.80 0.05
4000 0.75 3196.05 0.80 0.05
4500 0.75 3604.25 0.80 0.05
5000 0.75 4000.68 0.80 0.05
5500 0.75 4397.31 0.80 0.05
6000 0.75 4805.35 0.80 0.05
6500 0.75 5202.18 0.80 0.05
7000 0.75 5598.88 0.80 0.05
7500 0.75 5995.12 0.80 0.05
8000 0.75 6403.51 0.80 0.05

SUM 0.76
MEAN 0.05

Furthermore, people with no known hearing impairments tested the app dur-
ing a face-to-face conversation. All agree that i) there are distortions present in
the output signal; ii) the latency period between the input and output signal
is noticeable and almost certainly longer than 50ms. The majority of the dis-
tortions in the output signal are most likely a result of the time scaling method
utilized. Because a portion of the tail end of each input signal is discarded,
consecutive output signals do not match up perfectly. That is, the consecutive

10 Kathryn Grebel, Duy Dang, Liran Ma, Donnell Payne, and Brent Cooper

signals are no longer smoothly connected. The result is the periodic clicking
sound heard in the output. The too large latency values are a result of audio
processing issues that are inherent to the Android operating system.

We also observed that cubic spline interpolation can take up to 20 min-
utes and Lagrange interpolation can take at least 10 minutes to accomplish the
up-sampling of an intermediary signal that is less than 23ms in length. This
currently makes the point insertion by averaging technique the better choice for
up-sampling the intermediary signal.

6 Conclusion

In this paper, we discuss the design and implementation of a smartphone-based
hearing aid app. Specifically, our app applies user input to tailor its parameters
by calculating an individualized target bandwidth and utilizing frequency com-
pression techniques to increase speech intelligibility. Input audio is shifted to
within the target bandwidth using linear frequency compression. The scheme is
implemented as an app on an off-the-shelf Android-based smartphone. Our pre-
liminary results show that the app does lower the frequencies of input signals,
but there are distortions in the output audio and the latency exceeds the desired
limit, which might require moving development to another platform entirely.
We intend to improve this scheme by exploring the means for further reducing
latency periods and distortions. Additionally, we plan to devise a method to
introduce scenario adaptability to the app.

References

[1] Holt, J.A., Hotto, S., Cole, K.: Demographic Aspects of Hearing Impairment:
Questions and Answers. Center for Assessment & Demographic Studies, Gallaudet
University (1994)

[2] Simpson, A., Hersbach, A.A., McDermott, H.J.: Improvements in speech percep-
tion with an experimental nonlinear frequency compression hearing device. Inter-
national Journal of Audiology 44(5) (2005) 281–292

[3] François, G.: Guitar pitch shifter. Matlab Code and Mathematic Equations
http://www.guitarpitchshifter.com/matlab.html (2012)

[4] Charpentier, F., Stella, M.: Diphone synthesis using an overlap-add technique for
speech waveforms concatenation. In: Acoustics, Speech, and Signal Processing,
IEEE International Conference on ICASSP ’86. Volume 11., IEEE (1986) 2015–
2018

[5] Laroche, J., Dolson, M.: Improved phase vocoder time-scale modification of audio.
Speech and Audio Processing, IEEE Transactions on 7(3) (1999) 323–332

[6] Capurso: Echo Capture
[7] Tone Generator: Online Tone Generator. http://www.onlinetonegenerator.com
[8] Seventh String Software: The Seventh String Tuner. http://www.seventhstring.

com/tuner/tuner.html

