

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Ribbit
A Cost-Effective iOS Hearing Aid App

Developer’s Manual v1.1

Computer Science Department

Texas Christian University

May 2, 2016

i

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Revision Signatures
By signing the following, the team member is stating that he has read the entire document and has

verified that the information contained within this document is accurate, relevant to the project, and

void of errors.

Name Signature Date

Duy Dang

Robert Kern

Esteban Kleckner

ii

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Revision History
Version General Description of Changes Date Completed

V1.0 Initial Draft 5/1/16

V1.1 Updated screenshot of QR generation 5/2/16

iii

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Contents
Revision Signatures .. i

Revision History .. ii

1 Introduction ... 1

1.1 Purpose ... 1

1.2 Project Overview ... 1

1.3 Overview of Document ... 1

2 System Overview .. 2

2.1 System Components ... 2

2.2 Ribbit iOS Application ... 2

2.3 QR Code Prescription Generation Website .. 2

3 Development Setup ... 3

3.1 iOS Development .. 3

3.2 Web Development .. 3

4 Accelerate Framework ... 4

4.1 What is it ... 4

4.2 How do we use it? ... 4

5 Ribbit Application ... 5

5.1 Class Explanation .. 5

5.2 Touch ID .. 6

5.3 Filter Window Generation .. 7

5.4 Gain Window Generation ... 7

5.5 Combination Window Generation .. 9

5.6 Partitions of Unity ... 10

5.7 Core Data .. 12

5.8 QR Reader ... 14

6 QR Code Generation Website .. 17

6.1 Red Hat OpenShift... 17

6.2 QR Generation .. 17

1

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

1 Introduction
1.1 Purpose
This document is intended to provide a detailed developers guide of the Ribbit iOS application, as well as

the prescription creation process. Included will be what is required to continue working on the Ribbit

iOS Application as well as how to access the QR Code Creation Website.

1.2 Project Overview
The objective of this project is to create an iOS application that functions similarly to a physical hearing

aid device, but at a fraction of the cost. The application works within the federal regulations concerning

the usage of hearing aids. The aim of the application is to correct the user's perception of sound by

changing the sound to fit their inability to hear certain frequencies.

1.3 Overview of Document
 Section 2: In section 2, we give an overview of the different components of our project.

 Section 3: In section 3, we go over the required set up for the project.

 Section 4: In section 4, we give an overview of the main sections and classes of the Ribbit iOS

Application.

 Section 5: In section 5, we go over the Accelerate framework in detail and how it is used within

the Ribbit iOS Application.

 Section 6: In section 6, we give an overview of the QR Code Creation Website.

2

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

2 System Overview
2.1 System Components
Ribbit is composed of two parts: an iOS Application and the QR Code Generation Website. To access

the QR code generation website, open a compatible web browser and navigate to the following URL:

http://tcuhearing-ribbitcu.rhcloud.com/.

2.2 Ribbit iOS Application

The main component of the project is the iOS application. This is what the user will interact with on a

regular basis. It is divided into four distinct parts: a home page, a table containing all prescriptions that

have been read in, a camera view to read in additional QR code prescriptions, and a view to read what

the prescription entails. More detail will be given to each part of the application in the following

sections.

2.3 QR Code Prescription Generation Website

The QR code generation website is available to anyone through the above URL. The website was

designed to allow an Audiologist or trained professional to rapidly generate prescriptions that will be

used by the Ribbit iOS application.

http://tcuhearing-ribbitcu.rhcloud.com/

3

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

3 Development Setup
3.1 iOS Development
In order to develop for iOS using the new standard language Swift 2, a computer running at least OS X

10.11.4 is required. In addition to the hardware requirement, Xcode must be installed on the computer.

To install Xcode, if not already installed, visit

https://itunes.apple.com/us/app/xcode/id497799835?mt=12. All development takes place within

Xcode. In addition to the development computer, an Apple iPhone is also required. Any iPhone 5s or

later running at least iOS 7.0. All testing for the application will occur on the iPhone.

In order to put the application on the App Store, an Apple Developer Program is also required. If you are

not planning to upload the application to the App Store, an account is not required. What is required

regardless is an Apple ID. To create an Apple ID, go to https://appleid.apple.com/account.

Source code for the iOS portion of this project are located within the Source_Code/Ribbit/ folder of the

DVD.

3.2 Web Development
In order to develop an application for the internet, any computer with an active internet connection will

work. Cloud hosting for the QR Generation Website was done using Red Hat OpenShift,

https://www.openshift.com/. Contact Dr. Ma for credentials to access the hosting settings. Required

software include: a text editor, a web browser, RHC (Red Hat Cloud client – Instructions:

https://developers.openshift.com/managing-your-applications/client-tools.html), Ruby (required to run

RHC), and git (used to push code to OpenShift server and deploy the application).

Openshift’s getting started instructions for Windows covering Ruby, Red Hat Client (RHC), and git:

https://developers.openshift.com/getting-started/windows.html

Source code for the QR Creation Website is located within the Source_Code/QR_Creation/ folder of the

DVD.

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://appleid.apple.com/account
https://www.openshift.com/
https://developers.openshift.com/getting-started/windows.html

4

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

4 Accelerate Framework
4.1 What is it
The Accelerate Framework is the API that Apple provides for vector mathematics and digital signal

processing, amongst other things. Specifically, for this project, we are using its vDSP portion. vDSP

contains methods for vector multiplication and Discrete Fourier Transforms that allow us to take a signal

in the time domain and transform it into the frequency domain.

4.2 How do we use it?
Within our application, the vDSP is used for its Fast Fourier Transform (FFT) methods. The FFT, and the

Inverse FFT allow us to process input signals and make adjustments to them before sending them back

to the user. The FFT takes the sound in the time domain, and transforms it into the frequency domain.

Processing sound in the frequency domain is often times more efficient than processing sound in the

time domain. Once the signal is in the frequency domain, we apply a Combination Window that filters

and amplifies the signal to fit the user’s prescription. The signal is then transformed back into the time

domain using the inverse FFT. Finally, the signal is stitched together using Partitions of Unity as a

method of Transitions Smoothing.

Another application of the vDSP Library within Ribbit is vector multiplication. When we are apply

filtering and gain modification to the signal, we create a mathematical window for the signal to be

multiplied by. This multiplication is done using SIMD operations, thus requiring the vDSP. All of this

multiplication occurs within FilterWindow.swift and SoundEngine.swift.

5

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5 Ribbit Application
5.1 Class Explanation
The Ribbit iOS Application contains a total of 21 classes that are interconnected. Due to the way that the

Swift programming language interprets code, these different files are created purely for readability’s

sake. When Swift compiles the code, everything is read as one large file.

All of the application’s files are listed. More details for each is given in the respective sections.

 AudioController.swift – This class contains functions related to sound I/O. Once the sound is

received, it is sent to SoundEngine.swift where it is processed.

 ClassExtensions.swift – This class contains helper functions for the AudioController.

 FFToolset.swift – This class contains the FFT functions that are used throughout the project.

 Globals.swift – This class contains all of the global variables used throughout the project.

 HomeViewController.swift – This is the class loaded by the Home Page ViewController. It

contains the functions to authenticate the user via Touch ID and to set the active prescription

label.

 QRScanViewController.swift – This class contains the code to implement QR Code scanning as

well as how to load the information from the QR Codes into both the prescription table and into

Core Data.

 Prescription.swift – This class contains all information related to the prescriptions, including the

RxData struct, our QR Code parser function, and the struct for representing Frequency Bands as

thresholds.

 RxDataViewController.swift – This is the class loaded by the Rx Data View Controller. It contains

the functions to display the prescription as well as those needed to allow the user to set a

specific prescription as active.

 RxTableViewController.swift – This class contains the functions needed to run the table view

used for the prescriptions. It also contains the necessary functions to interface with and load

from Core Data.

 SoundEngine.swift – This class contains the necessary functions to process the sound, both

incoming and outgoing, and to combine both the Filter and Gain windows into one window.

 WindowGeneration.swift – This class contains the necessary functions to create the Filter, Gain,

and Weight windows.

Each larger part of the application uses these classes, and more, in different ways. These will be

discussed in their respective sections.

6

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.2 Touch ID
When the Ribbit application is launched, it will ask for the user to input their Touch ID information. All

functionality is added with the HomeViewController.swift within authenticateUser(). All Touch ID

related coding requires the LocalAuthentication framework to be imported. If the user does not have

Touch ID enabled on their device, the application brings up another window so that they may enter a

password. If the user clicks “Cancel”, the application sends an “Authentication was cancelled by the

user” notification and closes the application. This is done in an effort to protect the patient’s data from

outside access. All Touch ID functionality is done by calling on methods created by Apple and extending

them to be used within the confines of the Ribbit application.

7

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.3 Filter Window Generation
The filter window is generated once at application start. It is considered a low pass frequency filter; it

has three characteristic parts: low pass, transition, and no pass. The low pass section is characterized by

ones, which allows the signal to maintain its original data. The transition section is necessary to avoid

any divide by zero errors, when applying the FFT or inverse FFT, it’s designed to be infinitely

differentiable. The final section is characterized by zeros, where the input signal will be eliminated from

the final output signal.

5.4 Gain Window Generation
A new pair of gain windows (one for left ear, one for right ear) are generated every time a new

prescription is set to be active. The gain window contains values greater than or equal to 1 so that it will

increase the power (and ultimately the decibel level) of the frequency domain signal after multiplication.

However, in order to reduce the Gibbs Effect and artifacts caused by spectral leakages, to increase the

power of a frequency bin by a certain ratio, we will need to increase the neighboring bins to a

decreasing extents as it is getting farther from the current bin of focus. This is achieved by using a step

window which increases gradually from 1 to the desire ratio then decreases back to 1.

8

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

The ratio will be determined based on the decibel level that the frequency needs to be increased by. The

dBDiff() function will take in the current frequency in focus, the hearing data of the user, and the

hearing data of a normal hearing person and returns this decibel level.

After that, this decibel level will be put in the formula: ratio = 10 ^ (decibel difference / 20) to get the

ratio. This ratio will be used to build a step window with the top value equal to the ratio. This step

window will then be put into the right section of the gain window. The process of creating new step

window to be put into the gain window will be done in a loop to cover all frequency bins in the

frequency domain. Notice that this loop will be done twice, each for one ear (left and right).

9

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.5 Combination Window Generation

Every time a new hearing prescription (QR code) is set active, the application will call to

generateGainWindow() to generate a new pair of gain windows (for left and right ear) that reflects the

hearing data in the new prescription. After that, the Combination window for the left ear

(combineWinL) will be set to as the product of the Filter Window and the Gain Window for the left ear.

Similarly, the combination window for the right ear (combineWinR) will be set as the product of the

Filter Window and the new Gain Window for the right ear. The two combination windows are now ready

to be applied to the signal in the frequency domain.

10

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.6 Partitions of Unity
Partitions of Unity is the technique used to smooth out the mismatch in the transitions between

processed frames, which is caused by modifying discrete signal in the frequency domain using FFT and

IFFT. Our implementation of Partitions of Unity will modify the signal in not only adjacent signal frames

in the frequency domain but also the overlapping frames (50% overlapping before and after the current

frame in focus). Then, the two signals in the overlapping sections will be blended into each other by

gradually decreasing the weight of one while increasing that of the other (the total weight in any point

must be equal to 1).

As a result, for every frame that we output we will need to apply the combination window three times

(one to the current signal of focus, two to the overlapping frames). However, after optimization, our

implementation will only need to do this twice for every frame interval but the mechanism and effect

remain intact. To make several applications of combination window easier, we create the function

applyCombinedWindow() that can put the time domain signal into frequency domain, then modify by

multiplying the combination window to the frequency domain signal, then transform this processed

frequency domain signal back to the time domain.

After we have got the processed time domain signals (one current frame and two overlapping frames)

we will be able to apply the weight window and blend them together to create a time domain signal that

will smoothly transition into the next frame.

11

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

12

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.7 Core Data
Core Data is Apple’s form of data persistence within their products. It is effectively a SQLite database

saved within the application’s file system. Core Data is intended to reduce the amount of code that is

used to save data, such as the prescriptions for Ribbit. In order to work, Core Data needs access to the

CoreData framework as well as a .xcdatamodelID file that includes the schema for the database that the

information to be saved in. For more detailed information on how to set up Core Data, go to

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//a

pple_ref/doc/uid/TP40001075-CH2-SW1.

When you create a new iOS project that includes Core Data, Xcode automatically creates the Core Data

stack that will be loaded every time that the application is loaded. This includes creating the

PersistentStoreController, the part that acts a scratch board for Core Data before things are saved, the

managedObjectModel, the model that includes the data currently saved within Core Data as well as

information waiting to be saved, and sets the saving URL within the application’s file system.

To incorporate the QR Reader into Core Data, you must set the incoming data as a savable format. This

means set the incoming metadata steams as an entity for the Core Data database. Once you have it in

the correct format, you can add it to the Prescription Table, and then save it into the Core Data

database.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075-CH2-SW1
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075-CH2-SW1

13

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Once the new prescription data has been read into the Core Data database and has been loaded onto

the Prescription Table, you have to tell the Prescription Table to refresh so to get the new information.

This is done within the viewWillAppear() function in the RxDataViewController.swift. This function is

called every time that the ViewController is loaded, or is force loaded by the refreshing the table. When

the table refreshes, this function tells the table to query the Core Data database and pull any new

prescriptions that are not already stored in the Prescription Table.

14

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.8 QR Reader
In order to easily and securely read in prescriptions, we have gone with a QR Reader approach. In order

to utilize a QR code reader in Swift, you have to import the AVFoundation framework, which stands for

Audio Video Foundation. This allows this class to have access to both the microphone and the cameras

on the phone. As this section of the application only uses the rear camera in order to successfully read in

the QR Code.

The code below shows how to initialize the rear camera and to start up the camera capture when the

ViewController is first loaded. The incoming information from the camera is read to a

AVCaptureMetadataOutput() method, as the incoming data is seen as metadata before it is given

context. This context is given when the call “captureMetadataOutput.metadataObjectTypes =

[AVMetadataObjectTypeQRCode]” is made. From that point on, the application is looking for anything

that looks like a QR Code.

After the camera is initialized and given context, you have to start up a videoPreviewLayer, which allows

the user to see what the camera sees so they know where to aim the camera. After the

videoPreviewLayer is created and added to the view layer, you start the capture session. Then you had a

QR Code frame that appears when the camera finds a QR Code within its view area.

If a QR is found, the camera processes the metadata into a string so that it can be worked with. The

QRController makes sure that it contained the phrase “rx info”, parses the QR Code, displays the

15

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

prescription information inside of the QR code so the user can verify the information. After it is

displayed, the QRController checks to see if that Prescription is already in the table. If the prescription is

not there, the Prescription is loaded into the prescription table and saved as a new Prescription in Core

Data.

If the QR code contains any other information of than our prescription format, i.e. a hyperlink, the

captureSession displays a dialog saying “Invalid QR Code.”

16

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

17

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

6 QR Code Generation Website

6.1 Red Hat OpenShift
For the creation of the prescription QR codes, we chose to use a web hosting service in Red Hat

OpenShift hosting, which allows us to host on a Red Hat Enterprise Linux server. For access to the online

console, go to https://www.openshift.com/, click on My Account, choose OpenShift Web Console, and

enter the credentials that Dr. Ma has given you. The only domain there should be “tcuhearing”. This is

the domain that hosts our QR Code generation website.

6.2 QR Generation
Our QR Code generation site is running HTML5. All of the heavy lifting is done in Node.js 0.10. Node.js is

a scalable derivative of Javascript that allows multiple network connections at a given time. It has the

same syntax of Javascript and follows the same scripting formatting.

All computation for the QR Code is done on the user’s browser so that no medical information is sent of

the internet. This is done for medical information security.

https://www.openshift.com/

18

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Glossary of Terms
Gibb’s Effect: the effects related to signal mismatch happening when using FFT and IFFT

in discrete signal processing

Javascript: A scripting programming language used to make webpages dynamic.

QR Code: A form of bar code used to link different websites or to send information

Spectral Leakage: Occurs when an incoming frequency does not match a frequency bin

in the FFT

Touch ID: A security mechanism used to maintain exclusive access based on a user’s

fingerprint

