

TouchCU

Senior Capstone Project 2013 – 2014 Computer Science Department Texas Christian University

The Team

- Trenton Bishop: Documentation Lead
- Yizhou Hu: Algorithm Design Lead
- Blake LaFleur: Technical Lead
- Thales Lessa: Testing Lead
- Matthew Spector: Project Lead

<u>Prev</u>iew

3

Agenda

- Project Overview
- Microsoft Kinect
- Fall and Spring Semester Work
- Project Support Environment
- System Design
- Gestures
- Using TouchCU
- Demos
- Challenges
- Results and Future Work
- Q&A

Project Overview

- Easy way to interact with devices.
- Growth of touch technology integration.
- Increased demand by users wanting new/innovative ways to interact.
- TouchCU was born.

Create a standalone application for the Windows 8 Operating System that implements voice and touch interaction on any flat surface.

Minimal hardware requirements Windows 8 PC Standard Projector Flat, non-reflective surface Microsoft Kinect for Windows

Microsoft Kinect

h

- Motion sensing input device for Xbox 360 and Windows PC
- Maximum capture rate of 30fps

- Joint data represented as (X,Y,Z) coordinates
- Distance in meters from Kinect origin

Kinect Data Streams

- 3 visual data streams
 - Color
 - Depth
 - Skeleton

Kinect Color Stream

- Projected image seen from Kinect view
- Used for calibration
- Mapped to Depth Stream

Kinect Depth Stream

 Used for calibration and depth tracking

 Mapped to Skeleton Stream

g

Kinect SDK Skeleton Stream

- Two skeletal tracking modes
 - Default 20 joints
 - Seated 10 joints

Kinect Audio Stream

• Used for voice commands

- Iteration 1
- Iteration 2
- Iteration 3
- Iteration 4
- NTASC
- SRS
- Final Presentation

Milestones

Fall 2013 Semester

- Project Selection
- Familiarization with project support environment
- Project Defined
 - Project Plan
 - Initial Requirements
 - Initial Design
- Iteration 1
 - Test constraints on the Kinect's ability to capture hand locations
 - Identify supported gestures single, two-handed and air gestures
 - Implement manual screen calibration
 - Functional implementation of "Drag" gestures to OS

Spring 2014 Semester

- Iteration 2
 - Optimize screen calibration
 - Define voice commands
 - Implement debugging overlay and settings menu

- Iteration 3
 - Implement all pointer movements from Kinect to Windows
 - Implement touch-specific gestures
 - Implement voice commands

[14]

Spring 2014 Semester

- Iteration 4
 - Implement air gestures
 - Final system testing and bug fixing
 - Developer and User Manuals
 - User Acceptance Testing (UAT)
- Each Iteration
 - Planning
 - Requirements and Design adjustment
 - Documentation, Documentation, Documentation

Presentations

North Texas Area Student Conference

TCU Student Research Symposium

16

Project Support Environment

Programming Environment

- Kinect Developer Toolkit Software Development Kit (SDK)
- Kinect Studio for Windows v1.8.0
- Microsoft Windows 8 x64 Professional
- Visual Studio Pro 2012

Other Software

- Adobe Photoshop CS 6
- Camtasia Studio 8
- Core FTP Lite
- Google Drive
- GroupMe
- Handbrake
- iMovie
- Microsoft Office 2010
- Microsoft Visio 2013
- Subversion, Tortoise SVN

Kinect Studio

8

System Architecture

Gestures

20

Application States

Using TouchCU

Step 1: Setup

23

Step 2: Calibration

Step 3: Determine Hand Position on Projection Screen

 $P_{h}(x, y, z) = x_{0}r + y_{0}q + z_{0}n$ ScreenLocationX = Width * x_{0} ScreenLocationY = Height * y_{0}

Data Filtering

Built-in Kinect filtering parameters

- Smoothing
- Correction
- Prediction
- Jitter Radius
- Max Deviation Radius

Based on the Holt Double Exponential Smoothing method

Calibration + Settings

Voice Commands + Debug

28)

Air Gestures

Technical Challenges

- Kinect design and orientation
- Skeletal Tracking
- Accuracy vs. Responsiveness
- Windows 8 Touch Injection API
- Simulating gestures

General Challenges

- Scheduling and prioritizing
- Effective communication
- Accountability among team members

Keeping documentation up-to-date with each iteration

Results and Future Work

- Successfully allows user to interact with Windows 8
 - Response time meets Microsoft Touch Device standards of 500ms
 - Supports most Windows 8 compatible gestures
- Transition to the Kinect SDK 2.0 and the new Kinect from Microsoft
- Expand voice command/air gesture functionality
- Implement annotation mode
- Research use of open source SDK for cross-OS support

Fun with TouchCU

Thanks

- Project Advisor
 - Dr. Payne
- Equipment Donor
 - Patrick Anderson Microsoft (TCU CS '93)
- Advice on Mathematics
 - Eric Elsken TCU CS/Mathematics Double Degree Student

Thank you from Team

