

TouchCU

Texas Christian University
April 23, 2014

[DEVELOPER GUIDE]
Version 4.1
©2013-2014 Computer Science Department, Texas Christian University

[DEVELOPER GUIDE] TouchCU

Texas Christian University | Revision Signatures I

Table of Contents
I. Revision Signatures .. III

II. Revision History ... IV

1 Introduction ... 1

1.1 Purpose ... 1

1.2 Overview ... 1

2 System Overview .. 2

2.1 System Components ... 2

2.1.1 TouchCU Standalone Application .. 2

2.1.2 Microsoft Kinect for Windows ... 2

2.1.3 Standard Projector ... 2

2.2 Environment .. 2

3 Development Getting Started .. 3

3.1 Microsoft Kinect .. 3

3.2 Standalone Application Development .. 3

3.2.1 Creating an Application .. 3

4 Standalone Application Development ... 4

4.1 System Overview... 4

4.1.1 Kinect Interactions ... 4

4.1.2 Touch Inputs... 4

4.1.3 System Tray .. 4

4.1.4 Debug Menu... 4

4.2 Classes ... 5

4.2.1 Touch.. 5

4.2.2 Speech .. 6

4.2.3 Debug ... 7

4.2.4 Application ... 8

4.3 The GUI ... 10

4.3.1 Calibration Window ... 10

4.3.2 Settings Window .. 10

4.3.3 Debug Menu... 10

4.3.4 Speech Visualizer ... 11

[DEVELOPER GUIDE] TouchCU

Texas Christian University | Revision Signatures II

4.3.5 System Tray Menu ... 11

4.4 Kinect Integration ... 12

4.4.1 Discovering and Initializing the Kinect ... 12

4.4.2 Frame Listeners .. 13

4.5 Deriving Touch Injection Parameters .. 15

5 Glossary of Terms ... 17

6 Appendix .. 18

6.1 Appendix A: Gesture Tables .. 18

6.2 Appendix B: Voice Command Tables .. 19

6.3 Appendix C: Use Case Diagram ... 20

6.4 Appendix D: Use Case Scenarios ... 21

[DEVELOPER GUIDE] TouchCU

Texas Christian University | Revision Signatures III

I. Revision Signatures

By signing this document, the team member is acknowledging that he/she has read through this
document thoroughly and has certified that the information within this document is accurate and
satisfies all requirements.

Name Signature Date Signed

Trenton Bishop

Yizhou Hu

Blake LaFleur

Thales Lessa

Matthew Spector

[DEVELOPER GUIDE] TouchCU

Texas Christian University | Revision History IV

II. Revision History

Version Changes Edited

v1.0 Initial Documentation Draft 04 February 2014

v2.0 Additional development information added 18 February 2014

v3.0 Added math explanation and updated based on current
project state

28 February 2014

v4.0 Iteration 4 25 March 2014

v4.1 Final Draft 23 April 2014

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 1 Introduction 1

1 Introduction

1.1 Purpose

The purpose of this document is to provide developers with the appropriate information so that
they can modify the TouchCU source code to meet their needs and requirements. Each major
component of the application will be broken down and outlined.

1.2 Overview

This document includes the following sections.

Section 2 – System Overview: Covers the main components of the system.

Section 3 – Development Getting Started: Covers an introduction to programming with the
Microsoft Kinect.

Section 4 – Standalone Application Development: Covers the classes and programming of the
TouchCU Application.

Section 5 - Glossary of Terms: Includes a list of abbreviations and their technical terms and their
associated definitions.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 2 System Overview 2

2 System Overview

2.1 System Components
TouchCU is comprised of the standalone application, a computer running Windows 8 or newer, the

Microsoft Kinect for Windows, and a standard projector.

2.1.1 TouchCU Standalone Application

The TouchCU standalone application is used to initially calibrate the system for use. Once the user has

calibrated the system, TouchCU runs in the background. The application’s settings, screen calibration,

and debug mode can all be accessed from the system tray menu.

2.1.2 Microsoft Kinect for Windows

The Kinect is used in all aspects of our system. It uses a proprietary USB cable for power and connection

to the computer. The Kinect tracks 20 joints while in Default Mode and captures at a rate of 30Hz. Our

system utilizes the AudioStream, ColorStream, DepthStream, and SkeletonStream.

2.1.3 Standard Projector

TouchCU is compatible with any projector. A resolution of 1920x1080 is recommended for best

performance, if 1920x1080 is not possible, choose a resolution as close to this as possible. The

projector can use either analog or digital input as long as it supports the required resolution.

2.2 Environment

TouchCU will be a software application that can be installed on any computer running Windows 8 or

higher. The Kinect Driver v1.8.0 must be installed along with the .NET Framework 4.5(included in

Windows 8).

The computer must meet the minimum requirements for using the Microsoft Kinect, which are:

 minimum of a dual-core processor @ 2.66 GHz

 2 GB of RAM

 dedicated USB 2.0 port

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 3 Development Getting Started 3

3 Development Getting Started

3.1 Microsoft Kinect
In order to use the Kinect for development, a Kinect for Windows must be used. The user must also

download the Kinect for Windows SDK and Developer Toolkit from http://www.microsoft.com/en-

us/kinectforwindowsdev/start.aspx. The Kinect for Windows SDK will install the driver, and the required

APIs and device interfaces used for Kinect development. The Kinect for Windows Developer Toolkit

includes Human Interface Guidelines, sample applications (with full source code), Kinect Studio, Face

Tracking SDK, along with other development resources.

 Kinect for Windows SDK

 Kinect for Windows Developer Toolkit

TouchCU was developed and tested using v1.8.0 of the SDK and Developer Toolkit.

3.2 Standalone Application Development
The standalone application was written in Microsoft Visual Studio 2012 and used C# along with the .NET

Framework 4.5. It is necessary to use this IDE when developing for the Microsoft Kinect since the Kinect

for Windows SDK is integrated into Microsoft Visual Studio. This IDE can be purchased from Microsoft

and can be found at http://msdn.microsoft.com/en-US/vstudio.

Note: If you are a student, contact your professor or department for access to DreamSpark. This will

allow you to obtain Visual Studio at either little or no cost. Visit the following link for more details.

https://www.dreamspark.com/Student/Default.aspx

3.2.1 Creating an Application

1. Create a new C# WPF project and give it a name.

2. Within your Visual Studio project, right-click on solution and click Add Reference.

3. Select the tab .NET from the window that appears.

4. Verify that the Microsoft.Kinect listing is present.

a. If there is no reference to Microsoft.Kinect, select the Browse tab.

b. Navigate to C:\Program Files\MicrosoftSDK\Kinect\V1.8\Assemblies\Microsoft.Kinect.dll.

c. Select OK to add the reference to your project.

The developer can now add using Microsoft.Kinect in the import section of their code to access the

Kinect in their application.

http://www.microsoft.com/en-us/kinectforwindowsdev/start.aspx
http://www.microsoft.com/en-us/kinectforwindowsdev/start.aspx
http://msdn.microsoft.com/en-US/vstudio
https://www.dreamspark.com/Student/Default.aspx

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 4

4 Standalone Application Development

4.1 System Overview

4.1.1 Kinect Interactions

The KinectControl class controls various aspects of the Kinect hardware, and sets up the different

streams for use with the TouchCU application. The KinectFrameListeners class contains the

EventListeners that are triggered by the Kinect when specific frames are ready to be processed. There

are currently two listeners that have been created. One for calibration mode, and the other for

TouchAnalyser.

4.1.2 Touch Inputs

The TouchAnalyser class takes in Kinect input points, convert them into pixel locations on the screen. It

then detects the number of touch points in action and construct touch points for the Windows 8 Touch

Injection API.

4.1.3 System Tray

The System Tray class contains the ability to be able to open all windows associated with the TouchCU

application, as well as exit the application completely.

4.1.4 Debug Menu

The debug menu consists of three WPF windows: the main debug window, the touch tracker, and the

manipulation mode. It takes input values from 1) output of TouchAnalyser and 2) Windows Message

loop. These values are displayed side-by-side in the main debug window, which allows for the debugging

of our touch injection.

The touch tracker window visualizes the users touch points on the canvas by allowing the users to draw

on the canvas by touching it. This allows verification of the location of touch injection as well as the

performance of the smoothing parameters.

The manipulation window allows the user to manipulate the image on the screen using one & two-

handed gestures. The image on the manipulation window can be dragged, rotated, and zoomed. After

the user successfully manipulations the image, the manipulation data is displayed in the main debug

window.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 5

4.2 Classes

4.2.1 Touch

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 6

4.2.2 Speech

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 7

4.2.3 Debug

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 8

4.2.4 Application

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 9

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 10

4.3 The GUI

For the development of the TouchCU application, we tried to make the user experience as intuitive as

possible. The GUI is composed of the following interfaces:

 Calibration Window

 Settings Window

 Debug Window (main window, point tracker window, manipulation window)

 Speech Visualizer

 System tray menu

4.3.1 Calibration Window

This window, as the name suggests, allows the user to calibrate its projected screen in relation to the

Kinect’s view. The Calibration window is ALWAYS initiated at program startup, so that TouchCU can be

calibrated. It contains a “Canvas” that displays a view of the Kinect’s camera, a slider for adjusting the

Kinect’s vertical angle, a dropdown menu for deciding which display to use when the application has

been calibrated, and buttons for resetting calibration points or accepting the calibration points (only

enabled after 4 points are chosen). The “Canvas” object with the Kinect’s view allows the user to select

the 4 corners of the projection screen; these points can be dragged to adjust the calibration area.

4.3.2 Settings Window

This window allows the user to adjust smoothing parameters and enable/disable specific features of the

application. The settings window allows the users to adjust the following options:

 Disable air gestures

 Disable voice commands

 Smoothing

 Correction

 Prediction

 Jitter radius

 Max deviation radius

 Distance to consider a touch

 Hand extension

 Save button (must be clicked to save changed settings)

4.3.3 Debug Menu

This window allows the user to debug and test the application. The Debug Window is composed of a

main window and two sub-windows, point-tracker and manipulation. The main window provides data

feedback for the user. It contains ellipses that change color when either pointer is interacting with

Windows. In the middle, there is a list-view that is populated with recognized touch events as they

occur, along with the X,Y,Z coordinates from Windows & TouchCU for each pointer. X and Y are pixel

coordinates and Z is meters from the projection surface. Lastly, the main window contains buttons to

open/close the point-tracker and manipulation windows, as well as close the Debug Window itself.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 11

The point-tracker and manipulation sub-windows fill the remaining part of the screen below the main

window. These windows which are activated through the pressing of buttons on the main window,

allow for user interaction.

4.3.3.1 Point Tracker Window

This is an extension of the debug menu (opens under it) and is a blank purple screen. Whenever it sees

a touch, it follows the user’s hand and draws a green path until the user removes its hand from the

interaction zone.

4.3.3.2 Manipulation Window

This window is an extension of the debug menu. It contains a graphic of the TCU logo. It allows the user

to interact with/manipulate the object on the screen; that is, it allows the user to drag, zoom in

(enlarge), zoom out (shrink), and rotate the image displayed on the screen.

4.3.4 Speech Visualizer

This window was designed to make it easier for the user to use voice commands while using TouchCU.

Whenever the user says “Addie” (the word that initializes all voice commands), a full screen window

opens up with the commands available to the user. They’re separated in two ListBox objects; one

contains the command words (“Open”, “Close”) and the other the action words (“Start Menu”,

“Window”, “My Documents”, “Settings”, “Debug”). At the top of the screen, there are Label objects,

containing the selected commands; i.e. when the user says “Open”, the word open shows up, then

when it says “Debug”, the word debug shows up and the command is fired.

4.3.5 System Tray Menu

Our system tray menu is a ContextMenu contained inside System.Windows.Forms and is accessed by

right clicking on the TouchCU icon on the system tray. When open, it shows 4 menu items: “Calibration”,

“Debug”, “Settings”, and “Exit”. The first 3 open their respective windows and “Exit” closes the program.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 12

4.4 Kinect Integration

4.4.1 Discovering and Initializing the Kinect

All of the code for initializing the Kinect can be found in the InitSensor function within the KinectControl

class of the solution.

After the Kinect sensor has been chosen it is tested to make sure that it is fully operational, and if so we

want to start the sensor using the built in Start() function. After the Kinect sensor has been started we

need to set the resolution of the streams that we plan to use.(DepthStream, ColorStream, and

SkeletonStream) A few arrays to hold the values of each stream, and the skeletons being tracked.

Figure 1

Figure 2

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 13

4.4.2 Frame Listeners

Cal_SensorAllFramesReady – Calibration Frame Listener

Figure 3

When the calibration window is opened this frame listener is added to the Kinect Listeners’ Action

Event. Depth frame and color frame information is then loaded into the appropriate arrays, and

resources are then given back to the Kinect. Then we want to map the depth frame to the color frame to

align the two streams together to make sure that the depth of the pixel that the user clicks on is correct

for both streams. Once the streams are mapped we can display the updated color stream bitmap on the

window.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 14

TA_SensorSkeletonFrameReady – Touch Analyzer Frame Listener

Once calibration has been completed we switch the frame listener from Cal_SensorAllFramesReady to

TA_SensorSkeletonFrameReady because the DepthStream and ColorStream have been turned off at this

time. This allows us to increase the frame rate of the Kinect from 12FPS to its maximum 30FPS.

Similarly to the previous frame listener, we want to copy our data into the appropriate arrays to give the

resources back to the Kinect. Once completed, we want to traverse through our list of skeletons to find

the first one that has all joints successfully tracked. The wrist joint, hand joint, and ID are passed to the

TouchAnalyzer in order for it to compute the hand location in terms of the calibrated projection area.

Lastly we call sendTouch() to process each hand and inject the data into the Windows TouchInjection

API.

Figure 4

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 15

4.5 Deriving Touch Injection Parameters

Figure 5

Every point in the space that the Kinect can see is represented by three Cartesian coordinates (x,y,z). To

identify the “touch” surface, these Cartesian coordinates are used to represent a vector from the

Kinect’s origin (it’s camera/depth detector) to that particular point as ⃗ ⃗ .

Note: Figure 2 displays the view as seen from the Kinect, please note this is a mirrored image.

The upper left corner is used as a base point. Then, two vectors: from the upper left corner to the

upper right corner and from the upper are calculated. and determines the plane the projected

image is in. For any pixel in the image, it can be represented as) from , with

 .

⃗⃗ ⃗⃗ ⃗⃗ ⃗

⃗⃗⃗⃗

⃗⃗⃗⃗⃗⃗

⃗⃗⃗⃗

The cross product, ⃗ , of and is then taken. ⃗ points vertically out from the plane.

P0

 PUR

PLL

Ph

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 4 Standalone Application Development 16

 ⃗

| |

For any hand position in the 3D space, the different between the input point and the UL corner point

can be represented by a linear combination of , and ⃗ .

⃗⃗⃗⃗

⃗⃗⃗⃗ ⃗

The coefficients x, y and z are determined by this formula:

(

) ⃗) (

⃗⃗⃗⃗
⃗⃗⃗⃗)

 Screen Injection))

 Distance from hand to screen

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 5 Glossary of Terms 17

5 Glossary of Terms

 Audio Stream – Data stream from the Kinect that allows for high-quality audio capture that can

be used for voice commands.
 Color Stream – Data stream from the Kinect that acts as an RGB web camera.
 Depth Stream – Data stream from the Kinect that creates a depth map from the distance of the

sensor to the object.
 EOD - End of Day.
 HDMI - High-Definition Multimedia Interface.
 IDE - Integrated Development Environment.
 Kinect - A motion sensing input device by Microsoft for the Xbox 360 video game console and

Windows PCs. Based around a webcam-style add-on peripheral, it enables users to control and
interact with PC through a natural user interface using gestures and spoken commands. The
Kinect recognizes 20 joints on the human body at a capture rate of 30 Hz.

 Kinect Studio - Debugging tool for the Kinect sensor that allows the depth and color streams to
be viewed in real time.

 NTASC - North Texas Area Student Conference.
 Rich Interaction – Supports multi-touch.
 SDK - Software Development Kit.
 Skeletal Stream – Data stream from the Kinect that tracks up to 20 joints on the human body.
 SRS - Student Research Symposium.
 TBD - To Be Determined.
 TCU - Texas Christian University.
 TouchCU - The team & project name for the 2013-2014 senior design team.
 USB - Universal Serial Bus.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 18

6 Appendix

6.1 Appendix A: Gesture Tables

Single Hand Gestures

Name of Gesture How it’s Performed What it’s Used For

Tap (GR 1) Tap an item on the screen
once.

Simulates a left-click from a
mouse.

Double-Tap (GR 2) Tap an item on the screen
twice.

Simulates a double left-click
from a mouse.

Hold (GR 3) Tap an item on the screen and
hold.

Simulates a right-click from a
mouse.

Drag (GR 4) Tap and hold the screen while
moving in any direction.

Simulates moving an object on
the screen.

Two Hand Gestures

Name of Gesture How it’s Performed What it’s Used For

Zoom (GR 5) Both hands will be placed on
the screen and move either
farther or closer apart.

Simulates making an object
larger or smaller on the screen.

Rotate (GR 6) Both hands will be placed on
the screen to emulate a
clockwise or counter-clockwise
motion.

Simulate moving the object
around a center point.

Air Gestures

Name of Gesture How it’s Performed What it’s Used For

Swipe Left (GR 7) One hand in mid-air will move a
short distance to the left.

Simulates using the left arrow
on the keyboard.

Swipe Right (GR 8) One hand in mid-air will move a
short distance to the right.

Simulates using the right arrow
on the keyboard.

Figure 6

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 19

6.2 Appendix B: Voice Command Tables

Trigger Word

Name of Command How it’s Performed What it’s Used For

Addie (VCR 1)
[ad-ee]
[’ædiː]

User will say “Addie” aloud
followed by a command word +
action word.

Initiates the voice recognition
process.

Command Words

Name of Command How it’s Performed What it’s Used For

Open (VCR 2)
[oh-puh n]

User will say “Open” aloud
followed by an action word.

Used to open the following
action word.

Close (VCR 3)
[klohz]

User will say “Close” aloud
followed by an action word.

Used to close the following
action word.

Action Words

Name of Command How it’s Performed What it’s Used For

Start Menu (VCR 4)
[stahrt men-yoo]

User will say “Open/Close Start
Menu” aloud.

Opens or closes the Windows
Start Menu.

Window (VCR 5)
[win-doh]

User will say “Close Window”
aloud.

Closes the active window.

My Documents (VCR 6)
[mahy dok-yuh-muh nts]

User will say “Open My
Documents” aloud.

Opens the user’s Documents.

Settings (VCR 7)
[set-ings]

User will say “Open Settings”
aloud.

Opens the TouchCU settings
menu.

Debug (VCR 8)
[dee-buhg]

User will say “Open/Close
Debug” aloud.

Opens or closes the TouchCU
debugging overlay.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 20

6.3 Appendix C: Use Case Diagram

Figure 7

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 21

6.4 Appendix D: Use Case Scenarios

Screen Calibration

Actors User

General Goal Determine the size and position of the screen on the surface that is being
used and calculate proper screen coordinates.

Pre-conditions TouchCU application must be running.

 One Microsoft Kinect for Windows is connected to the computer via
USB and facing the surface that will be used.

 Windows Desktop is projected onto the screen surface.

Triggers The application is started on a computer for the first time or the user has
decided to re-run the calibration wizard.

Course of Events 1. Manual Calibration (Multi-point Calculation Method)

 The application will prompt the user to put their right hand on
each of the four screen corners.

 Takes the coordinates and saves the data in a local file for future
use.

2. The application will minimize and will begin to take input from the
Kinect.

Alternate Paths Application will use existing calibration settings.

Post-Conditions Application moves onto Monitoring State.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 22

Gesture Recognition (Monitoring State)

Actors User

General Goal Recognize user movement and determine which gesture was performed.

Pre-
conditions

Application is in the Monitoring State, successful post-calibration.

Triggers The data stream input to the Microsoft Kinect for Windows contains movement
from either one of the hands being tracked.

Course of
Events

1. Application determines if a gesture was received.
2. Application moves into active state.
3. Application generates the appropriate OS input command based on

gesture.
4. Application sends input command to the OS.

Alternate
Paths

If the hand does not generate a recognizable gesture, nothing will be done and
application will go back to the Monitoring State.

Post-
conditions

When one gesture is successfully processed and sent to the OS, the application will
go back to the Monitoring State.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 23

Accessing Settings Menu

Actors User

General Goal Provide a screen within the application that shows the user a menu where they can
select certain settings to change how the application runs.

Pre-
conditions

System is up and running.
Application is currently running and in either the Listening or Monitoring State.

Triggers User will right-click the TouchCU icon from the System Tray and select settings or
the user will say “Addie + Open + Settings”.

Course of
Events

The settings frame appear with the following checkboxes:

 Disable Air Gestures

 Disable Voice Commands

The settings frame also allows the user to set the following smoothing parameters:

 Smoothing

 Correction

 Prediction

 Jitter Radius

 Max Deviation Radius

 Distance to consider a touch

 Hand Extension

Alternate
Paths

The settings menu will not be present unless the icon is clicked on in the System
Tray or the user says “Addie + Open + Settings”.

Post-
conditions

Application will be running regularly.

[DEVELOPER GUIDE] TouchCU

Texas Christian University | 6 Appendix 24

Accessing Debugging Mode

Actors User

General Goal Provide a screen within the application that shows the user detailed information on
the input streams (IR, Depth, Color, Sound) the Kinect is receiving.

Pre-
conditions

System is up and running.
Application is currently running and in either the Listening or Monitoring State.

Triggers User will select the option from the settings menu or the user will say “Addie +
Open/Close + Debug”.

Course of
Events

The debug frame appear with the following:

 Screen overlay showing current touch data

 Coordinates of left and right hands
NOTE: This does not prevent the application from running.

Alternate
Paths

The debugging screen will not be present unless the option is selected from the
settings menu or the user says “Addie + Open/Close + Debug”.

Post-
conditions

Application will be running regularly with the debugging frame as an overlay.

